• Title/Summary/Keyword: tensile bars

Search Result 224, Processing Time 0.024 seconds

Bend Resistance of Polymer Cement Slurry Coated Reinforcing Bars

  • Kim, Wan-Ki;Chang, Sung-Ju;Kim, Hyun-Ki;Soh, Yang-Seob
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.42-48
    • /
    • 2001
  • The bend resistance of coated reinforcing bar is greatly influenced by both the adhesion strength between bar and coating materials, and the followed transformation of coating material as bars bend. Especially, tearing state or partial microscopic cracks are predicted on the inside and outside of bending angle, because tensile strength and elongation of polymer film are very different according to types of polymer dispersions in bar coating, and these damaged parts are rapidly corroded by penetration of corrosive factors. In this study, polymer cement slurry coated reinforcing bars with various polymer dispersions are prepared by following combined conditions, polymer-cement ratio of 50% and 100%, coating thickness of 250$\mu$m and 450$\mu$m, coating number, curing age of 3, 7, 14 and 28days. Then the specimens are tested for working life and bend resistance at bending angles $90^{\circ}$, $135^{\circ}$and $180^{\circ}$ to observe the microscopic damage effect as the bars bend. Also, epoxy-coated reinforcing bars for control experiment were used with 250$\mu$m of coating thickness. The tensile strength for polymer films is performed. From the test results, the working life of the polymer cement slurry is within 90 seconds. Among four types of polymer dispersion, polymer cement slurry coated reinforcing bar using St/BA-1 emulsion has the excellent bend resistance, which is remarkably improved than that of epoxy-coated reinforcing bar. And the bend resistance is more related to elongation than tensile strength of polymer film. Polymer cement slurry with a polymer-cement ratio of 100%, a coating thickness of $450\mu$m and one coating using St/BA emulsion is selected as a most suitable coating material for coated reinforcing bar.

  • PDF

Tension Stiffening Effect in Axially loaded Concrete Member Oncrete Member (축방향 인장을 받는 콘크리트 부재의 FRP 보강근의 인장강화 효과)

  • Nak Sup Jang;Chi Hoon Nho;Hongseob Oh
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.47-54
    • /
    • 2023
  • In this study, the tensile behavior of concrete specimens reinforced with GFRP (Glass Fiber Reinforced Polymer), BFRP (Basalt Fiber Reinforced Polymer), and CFRP (Carbon Fiber Reinforced Polymer) bars was experimentally analyzed. The tensile strength of the FRP bars is appeared to be similar to the design strength, but the elastic modulus was somewhat lower. Additionally, the specimens for tension stiffening effect were manufacured using OPC (Ordinary Portland Cement) and SFRC (Steel Fiber Reinforced Concrete), with dimensions of 150(W)×150(B)×1000(H) mm. The crack spacing of specimens was most significant for GFRP reinforcement bars, which have a lower elastic modulus and a smoother surface, while BFRP and CFRP bars, with somewhat rougher surfaces and higher elastic moduli, showed similar crack spacings. In the load-strain relationship, GFRP bars exhibited a relatively abrupt behavior after cracking, whereas BFRP and CFRP bars showed a more stable behavior after the cracking phase, maintaining a certain level of tension stiffening effect. The tension stiffening index was somewhat smaller as the diameter increased, and GFRP, compared to BFRP, showed a higher tension stiffening index.

SHPB인장 시험에서 알루미늄 합금의 진응력-진변형률 관계

  • Yang, Hyeon-Mo;Min, Ok-Gi
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1917-1922
    • /
    • 2000
  • The split Hokinson pressure bar(SHPB) test has been used to find the mechanical property of materials at high strain rate. A tensile split Hopkinson pressure bar test system is developed and the threaded tensile specimen and the split collar are placed between elastic bars. When the compressive elastic wave generated by a striker is transferred from the transmit bar to the incident bar, some elastic wave is reflected at the threaded parts of the specimen and the transmit bar. This reflected wave can interfere with the transmitted wave. A proper length of elastic bars and the location of strain gage in these elastic bars are determined to avoid this interference. In order to avoid the interference of elastic wave reflected at the threaded parts of specimen and elastic bar, the length of transmit bar must be longer than that of incident bar. Strain gage in transmit bar must be located as close as possible from the interface of a transmit bar and specimen. In the developed tensile SHPB test system, A12011-T3 and A17075-T6 are tested to get the true stress-strain relation in the range of strain rate at $10^3/sec$

Experimental Study on the Tensile Behaviors of Stud Connection with Hanger (행거로 보강된 스터드 접합부의 인장거동에 관한 실험적 연구)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.231-238
    • /
    • 2004
  • This paper presents the tensile behavior of the stud connection between reinforced concrete(RC) and steel members. Hanger reinforcements are placed around the studs to transfer the tensile and flexural loads to the opposite side of the concrete member. Eight specimens for the tensile tests are tested with variables, which are the arrangement details of hanger reinforcements, the reinforcing bars, and the embedment length of stud. The results of the tensile tests show that hanger reinforcements are effective to increase tensile strength for stud connections. Hangers and reinforcing bars near stud bolts contributed to the reduction of brittle failure. From the evaluation on the tensile strength by previous design guidelines, it was shown that CCD (Concrete Capacity Design) method was more suitable for estimation of test strength.

Tensile Properties and Testing Method for Glass Fiber Reinforced Polymer Reinforcing bar (GFRP Rebar의 인장특성 및 시험법에 관한 연구)

  • Park Ji-Sun;You Young-Chan;Park Young-Hwan;Choi Ki-Sun;You Young-Jun;Kim Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.172-175
    • /
    • 2004
  • This study is to investigate the tensile properties of glass fiber reinforced polymer(GFRP) reinforcing bars with various kinds of anchor systems experimentally. Three types of anchor systems were examined: resin sleeve anchor adopted by CSA Standard, metal overlay anchor by ASTM Standards and wedge anchor normally used in prestressing tendons. Also, three different types of GFRP bars with different surface deformations were tested in this study. All test procedures including specimens preparation, test apparatus and measuring devices were made according to the recommendations of CSA Standard S806-02. From the test results, it was found that the highest tensile strength of GFRP bar was developed by resin sleeve anchor, and tensile strength of GFRP bar with CSA anchor system is $10\%$ higher than that with ASTM anchor system in the case of sand-coated GFRP bar.

  • PDF

Shear Strength of SFRC Deep Beam with High Strength Headed Reinforcing Tensile Bars (고강도 확대머리 인장철근을 가지는 SFRC 깊은 보의 전단강도)

  • Kim, Young-Rok;Lee, Chang-Yong;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.5
    • /
    • pp.111-117
    • /
    • 2019
  • Shear experiments were carried out to evaluate shear performance of SFRC deep beams with end-anchorage of SD600 high strength headed reinforcing tensile bars. The experimental variables include the end-anchorage methods of tensile bars (headed bar, straight bar), the end-anchorage lengths, and the presence of shear reinforcement. Specimens with a shear span ratio of 1 showed a pattern of the shear compression failure with the slope cracks progressed after the initial bending crack occurred. Specimens with end-anchorage of headed bars (H-specimens) showed a larger shear strengths of 5.6% to 22.4% compared to straight bars (NH-specimens). For H-specimens, bearing stress reached 0.9 to 17.2% of the total stress of tensile bars up to 75% of the maximum load, and reached 22.4% to 46%. This shows that the anchorage strength due to the bearing stress of headed bars has a significant effect on shear strength. The experimental shear strength was 2.68 to 4.65 times the theoretical shear strength by the practical method, and the practical method was evaluated as the safety side.

Effect of corrosion pattern on the ductility of tensile reinforcement extracted from a 26-year-old corroded beam

  • Zhu, Wenjun;Francois, Raoul
    • Advances in concrete construction
    • /
    • v.1 no.2
    • /
    • pp.121-136
    • /
    • 2013
  • Tension tests were carried out to investigate the effect of the corrosion pattern on the ductility of tension bars extracted from a 26-year-old corroded reinforced concrete beam. The tensile behavior of corroded bars with different corrosion patterns was examined carefully, as were two non-corroded bars extracted from a 26-year-old control beam. The results show that corrosion leads to an increase in the ratio of the ultimate strength over the yield strength, but reduces the ultimate strain at maximum force of the reinforcement. Both the corrosion pattern and the corrosion intensity play an important role in the ductile properties. The asymmetrical distribution of the corrosion around the surface is a decisive factor, which can influence the ultimate strain at maximum force more seriously.

An Experimental Study on the Evaluation of Effective Flexural Rigidity in Reinforced Concrete Members (철근콘크리트 부재의 유효 휨강성 평가를 위한 실험적 연구)

  • Kim Sang Sik;Lee Jin Seop;Lee Seung Bae;Jang Su Youn
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.131-134
    • /
    • 2005
  • Until recently tensile stresses in concrete have not been considered, since it does not affect the ultimate strength of reinforced concrete flexural members significantly. However, to verify the load-deflection relationship, the effect of tensile stresses between reinforcing bars and concrete, so-called tension stiffening effect must be taken into account. Main parameters of the tension stiffening behavior are known as concrete strength, and bond between concrete and reinforcing bars. In this study a total of twenty specimen subject to bending was tested with different concrete strength, coverage, and de-bonding length of longitudinal bars. The effects of these parameters on the flexural rigidity, crack initiation and propagation were carefully checked and analyzed.

  • PDF

Lap Splice Length of Glass Fiber Reinforced Polymer (GFRP) Reinforcing Bars with Different Surface Design (외피형태에 따른 GFRP 보강근의 겹침 이음길이)

  • Choi Dong-Uk;Lee Chang-Ho;Ha Sang-Soo;Park Young-Hwan;You Young-Chan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.449-452
    • /
    • 2004
  • The lap splice lengths of deformed steel reinforcing bars and GFRP bars with two different to surface type were experimentally compared using beam specimens. The purpose was to evaluate the length required of the GFRP bar to develop strength equivalent to the conventional steel reinforcing bar. The main test variable was the lap splice length. Two different GFRP bar surfaces were tested: (1) spiral-type GFRP bars and (2) sand coated GFRP bars. For the conventional steel bars (SD400 grade), strength over 400 MPa in tension was reached using the lap splice length of $30d_b$. Splice failure was observed in the specimen with the lap splice length of $20d_b$. For the spiral-type and sand coated GFRP bars, the tensile strength developed in the GFRP bars decreased with decreasing splice lengths. Development of the cracks on beam surfaces was clearly visible for the beams reinforced with the GFRP bars. Mid-span deflections, however, were significantly smaller than the comparable beams with conventional steel bars indicating potential ductility problem.

  • PDF

Design of bars in tension or compression exposed to a corrosive environment

  • Fridman, Mark M.;Elishakoff, Isaac
    • Ocean Systems Engineering
    • /
    • v.5 no.1
    • /
    • pp.21-30
    • /
    • 2015
  • This study is devoted to the optimal design of compressed bars under axial tensile or compressive forces and exposed to a corrosive environment. Dolinskii's linear stress corrosion model is adopted for analysis. Analytical and numerical results are derived for optimal variation of the cross-sectional area of the bar along its axis.