• Title/Summary/Keyword: tensile axis

Search Result 145, Processing Time 0.031 seconds

Tension-Compression Asymmetry in the Off-Axis Nonlinear Rate-Dependent Behavior of a Unidirectional Carbon/Epoxy Laminate at High Temperature and Incorporation into Viscoplasticity Modeling

  • Kawai, M.;Zhang, J.Q.;Saito, S.;Xiao, Y.;Hatta, H.
    • Advanced Composite Materials
    • /
    • v.18 no.3
    • /
    • pp.265-285
    • /
    • 2009
  • Off-axis compressive deformation behavior of a unidirectional CFRP laminate at high temperature and its strain-rate dependence in a quasi-static range are examined for various fiber orientations. By comparing the off-axis compressive and tensile behaviors at an equal strain rate, the effect of different loading modes on the flow stress level, rate-dependence and nonlinearity of the off-axis inelastic deformation is elucidated. The experimental results indicate that the compressive flow stress levels for relatively larger off-axis angles of $30^{\circ}$, $45^{\circ}$ and $90^{\circ}$ are about 50 percent larger than in tension for the same fiber orientations, respectively. The nonlinear deformations under off-axis tensile and compressive loading conditions exhibit significant strain-rate dependence. Similar features are observed in the fiber-orientation dependence of the off-axis flow stress levels under tension and compression and in the off-axis flow stress differential in tension and compression, regardless of the strain rate. A phenomenological theory of viscoplasticity is then developed which can describe the tension-compression asymmetry as well as the rate dependence, nonlinearity and fiber orientation dependence of the off-axis tensile and compressive behaviors of unidirectional composites in a unified manner. It is demonstrated by comparing with experimental results that the proposed viscoplastic constitutive model can be applied with reasonable accuracy to predict the different, nonlinear and rate-dependent behaviors of the unidirectional composite under off-axis tensile and compressive loading conditions.

Inplane Shear Material Properties of Unidirectional Carbon Fiber Reinforced Aluminum Laminate Composites (일 방향 탄소섬유 강화 알루미늄 적층 복합재료의 전단물성치 측정에 관한 연구)

  • Baek, Un-Cheol;Cho, Maeng-Hyo;Hawong, Jai-Sug
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.10
    • /
    • pp.2114-2121
    • /
    • 2002
  • In order to study the effects of oblique tabs on the in-plane shear properties of unidirectional carbon fiber reinforced aluminum laminate composites, the 10$^{\circ}$off-axis tensile test, the 45 $^{\circ}$off-axis tensile test and Iosipescu shear test were performed to determine the shear properties. Off-axis tension test was studied by using new oblique-shaped tabs proposed by Sun and $Chung^{(7)}$. Iosipescu shear test was studied by using modified Wyoming test fixture. The oblique tabs reduced remarkably end-constraint effects of off-axis specimens with a aspect ratio of about eight. The experimental results show that there is no significant difference between off-axis test results and those of Iosipescu shear test. The 45$^{\circ}$off-axis tensile tests are recommended for the determination of the shear properties of unidirectional carbon fiber reinforced aluminum laminated composites.

Tensile strength of unidirectional CFRP laminate under high strain rate

  • Taniguchi, Norihiko;Nishiwaki, Tsuyoshi;Kawada, Hiroyuki
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.167-180
    • /
    • 2007
  • The tensile strength of unidirectional carbon fiber reinforced plastics under a high strain rate was experimentally investigated. A high-strain-rate test was performed using the tension-type split Hopkinson bar technique. In order to obtain the tensile stress-strain relations, a special fixture was used for the impact tensile specimen. The experimental results demonstrated that the tensile modulus and strength in the longitudinal direction are independent of the strain rate. In contrast, the tensile properties in the transverse direction and the shear properties increase with the strain rate. Moreover, it was observed that the strain-rate dependence of the shear strength is much stronger than that of the transverse strength. The tensile strength of off-axis specimens was measured using an oblique tab, and the experimental results were compared with the tensile strength predicted based on the Tsai-Hill failure criterion. It was concluded that the tensile strength can be characterized quite well using the above failure criterion under dynamic loading conditions.

Rotation of Orthotropy Axes of Steel Sheets by Tensile Elongation (인장변형에 의한 강판의 직교이방성 대칭축의 회전)

  • 인정제;김권희
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.10a
    • /
    • pp.33-43
    • /
    • 1994
  • A series of tensile tests have been performed to investigate the hardening behavior of rolled steel sheets. Tensile tests consist of three stages. At the 1st stage, full size tensile specimens were prestrained in the direction of rolling, then mid-sized tensile specimens were cut from the gauge sections of the full size specimens at angles to the rolling direction. At the 2nd stage, mid-sized specimens were prestrained by predetermined magnitudes of strains and miniature tensile specimens were prepared from each of the mid-sized specimens at every 10 degrees. At the final stage, from tests on miniature tensile specimens the hardening behavior of the prestrained sheets has been investigated. According to the experimental results, orthotropic symmetry is reserved during tensile elongation, and one of the orthotropy axes is continuously rotated to specimen axis. Existing theories seem to fail to explain the rotation of orthotropy axis. A new phenomenological model is proposed to explain the strain induced rotation of orthotropy axes.

  • PDF

Study of tensile behavior of Y shape non-persistent joint using experimental test and numerical simulation

  • Sarfarazi, V.;Hajiloo, M.;Ghalam, E. Zarrin;Ebneabbasi, P.
    • Computers and Concrete
    • /
    • v.26 no.6
    • /
    • pp.565-576
    • /
    • 2020
  • Experimental and discrete element methods were used to investigate the effects of angle of Y shape non-persistent joint on the tensile behaviour of joint's bridge area under brazilian test. concrete samples with diameter of 100 mm and thikness of 40 mm were prepared. Within the specimen, two Y shape non-persistent notches were provided. The large notch lengths were 6 cm, 4 cm and 2 cm. the small notch lengths were 3 cm, 2 cm and 1 cm. The angle of larger notch related to horizontal axis was 0°, 30°, 60°, 90°. Totally, 12 different configuration systems were prepared for Y shape non-persistent joints. Also, 18 models with different Y shape non-persistent notch angle and notch length were prepared in numerical model. The large notch lengths were 6 cm, 4 cm and 2 cm. the small notch lengths were 3 cm, 2 cm and 1 cm. The angle of larger notch related to horizontal axis was 0, 30, 60, 90, 120 and 150. Tensile strength of model materil was 1 MPa. The axial load was applied to the model by rate of 0.02 mm/sec. This testing showed that the failure process was mostly governed by the Y shape non-persistent joint angle and joint length. The tensile strengths of the specimens were related to the fracture pattern and failure mechanism of the discontinuities. It was shown that the tensile behaviour of discontinuities is related to the number of the induced tensile cracks which are increased by increasing the joint length and joint angle. The minimum tensile strength occurs when the angle of larger joint related to horizontal axis was 60°. Also, the maximum compressive strength occurs when the angle of larger joint related to horizontal axis was 90°. The tensile strength was decreased by increasing the notch length. The failure pattern and failure strength are similar in both methods i.e. the experimental testing and the numerical simulation methods.

On the tensile strength of brittle materials with a consideration of Poisson's ratios

  • Hu Guoming;Cho Heechan;Wan Hui;Ohtaki Hideyuki
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.603-610
    • /
    • 2003
  • The influence of Poisson's ratio on the tensile strength of brittle materials is neglected in many studies. When brittle materials are loaded in compression or impact, substantial tensile stresses are induced within the materials. These tensile stresses are responsible for splitting failure of the materials. In this paper, the state of stress in a spherical particle due to two diametrically opposed forces is analyzed theoretically. A simple equation for the state of stress at the center of the particle is obtained. An analysis of the distribution of stresses along the z-axis due to distributed pressures and concentrated forces, and on diametrically horizontal plane due to concentrated forces, shows that it is reasonable to propose the tensile stress at the center of the particle at the point of failure as a tensile strength of the particle. Moreover, the tensile strength is a function of the Poisson's ratio of the material. As the state of stress along the z-axis in an irregular specimen tends to be similar to that in a spherical particle compressed diametrically with the same force, this tensile strength has some validity for irregular particles as well. Therefore, it can be proposed as the tensile strength for brittle materials generally. The effect of Poisson's ratio on the tensile strength is discussed.

  • PDF

A study of the shear properties for hybrid composites (하이브리드 복합재료의 전단 물성치 측정에 관한 연구)

  • 백운철;조맹효;황재석
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.96-99
    • /
    • 2002
  • In order to determine the in-plane shear properties of unidirectional carbon fiber reinforced aluminum laminate composites, a new Iosipescu shear test fixture was developed, by using a fixture undergoing tensile force for the specimen edge to be subjected to compressive loads assumption, under plane stress. Also, to compare the results, Iosipescu shear test method by the modified Wyoming fixture and the off-axis tensile test were performed to determine the shear properties. Off-axis tension test was performed by using new oblique-shaped tabs proposed by Sun and Chung. [5] The oblique tabs reduced remarkably end-constraint effects of off-axis specimens with a aspect ratio of about eight. It is observed through the experimental results show that there is no significant difference between off-axis test results and those of Iosipescu shear test.

  • PDF

Influence of Glass Fiber Orientation on the Bi-directional GFRP Characteristics (직교이방향 GFRP 재료 특성에 미치는 유리 섬유방향의 영향)

  • Suh, Jung-Joo;Moon, Duk-Hong
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.21 no.1
    • /
    • pp.75-81
    • /
    • 1985
  • The tensile and dielctric strength of the epoxied resin with bi-directional woven glass fibers with a laminate of two layers(G-10) are studied, and the test parameter is the angle between fiber orientation and the tensile axis. The obtained results may be summaried as follows: 1) when the angle between fiber orientation and tensile axis was varied from 0$^{\circ}$ to 45$^{\circ}$ the yield and fracture stresses have a tendency to decrease with increase in the angle. Especially, the decrease rates in the yield and fracture stresses are changed remarkably in the range of 0$^{\circ}$ to 15$^{\circ}$. 2) The fracture strain has showed the maximum value when the angle between fiber orientation and tensile axis is 45$^{\circ}$, and showed the rapid rate of change from 15$^{\circ}$ to 45$^{\circ}$. 3) For the sample with same angle between fiber orientation and tensile axis the maximum dielectric strength under compressive stress is decreased with increase in tensile stress, when the compressive stress is increased as a parameter of tensile stress. 4) When the angle between fiber orientation and tensile axis is 45$^{\circ}$, the dielectric strength showed the worst value, as the mechanical strength did.

  • PDF

A new approach for measurement of anisotropic tensile strength of concrete

  • Sarfarazi, Vahab;Faridi, Hamid R.;Haeri, Hadi;Schubert, Wulf
    • Advances in concrete construction
    • /
    • v.3 no.4
    • /
    • pp.269-282
    • /
    • 2015
  • In this paper, a compression to tensile load converter device was developed to determine the anisotropic tensile strength of concrete. The samples were made from a mixture of water, fine sand and cement, respectively. Concrete samples with a hole at its center was prepared and subjected to tensile loading using the compression to tensile load converter device. A hydraulic load cell applied compressive loading to converter device with a constant pressure of 0.02 MPa per second. Compressive loading was converted to tensile stress on the sample because of the overall test design. The samples have three different configurations related to loading axis; 0, $45^{\circ}$, $-45^{\circ}$. A series of finite element analysis were done to analyze the effect of hole diameter on stress concentration of the hole side along its horizontal axis to provide a suitable criterion for determining the real tensile strength of concrete. Concurrent with indirect tensile test, Brazilian test and three point loading test were also performed to compare the results from the three methods. Results obtained by this device were quite encouraging and show that the tensile strengths of concrete were similar in different directions because of the homogeneity of bonding between the concrete materials. Also, the indirect tensile strength was clearly lower than the Brazilian test strength and three point loading test.

Suggesting a new testing device for determination of tensile strength of concrete

  • Haeri, Hadi;Sarfarazi, Vahab;Hedayat, Ahmadreza
    • Structural Engineering and Mechanics
    • /
    • v.60 no.6
    • /
    • pp.939-952
    • /
    • 2016
  • A compression to tensile load transforming (CTT) device was developed to determine indirect tensile strength of concrete material. Before CTT test, Particle flow code was used for the determination of the standard dimension of physical samples. Four numerical models with different dimensions were made and were subjected to tensile loading. The geometry of the model with ideal failure pattern was selected for physical sample preparation. A concrete slab with dimensions of $15{\times}19{\times}6cm$ and a hole at its center was prepared and subjected to tensile loading using this special loading device. The ratio of hole diameter to sample width was 0.5. The samples were made from a mixture of water, fine sand and cement with a ratio of 1-0.5-1, respectively. A 30-ton hydraulic jack with a load cell applied compressive loading to CTT with the compressive pressure rate of 0.02 MPa per second. The compressive loading was converted to tensile stress on the sample because of the overall test design. A numerical modeling was also done to analyze the effect of the hole diameter on stress concentrations of the hole side along its horizontal axis to provide a suitable criterion for determining the real tensile strength of concrete. Concurrent with indirect tensile test, the Brazilian test was performed to compare the results from two methods and also to perform numerical calibration. The numerical modeling shows that the models have tensile failure in the sides of the hole along the horizontal axis before any failure under shear loading. Also the stress concentration at the edge of the hole was 1.4 times more than the applied stress registered by the machine. Experimental Results showed that, the indirect tensile strength was clearly lower than the Brazilian test strength.