• 제목/요약/키워드: tendon stress

검색결과 187건 처리시간 0.023초

외부 PSC 보에서 외부강선의 극한 응력 예측식 제안 (Proposal on the Prediction Equation of Ultimate stress of External Tendon for the Prestressed Concrete Beams with External Tendons)

  • 유성원;하헌재
    • 한국안전학회지
    • /
    • 제25권5호
    • /
    • pp.44-53
    • /
    • 2010
  • Recently, the external prestressed concrete structures are increasingly being built. The mechanical behavior of prestressed concrete beams with unbonded tendon is different from that of normal bonded PSC beams in that the increment of tendon stress was derived by whole member behavior. By this reason, the ultimate stress of external tendon is smaller than that of bonded tendon or internal unbonded tendon. However, in the domestic and abroad code, the equation of ultimate stress of external tendon is not suggested yet, and the equation of ultimate stress of internal unbonded tendon is used instead of that of external tendon. Therefore, in this paper, after effective variables of ultimate stress of external tendon were analyzed, the analytical equation of ultimate stress of external tendon was proposed. And the reasonable coefficients were proposed by statistical work of test results of 25 beam with external tendon. Finally, the practical proposed equation of ultimate stress of external tendon was proposed with analytical and statistical model. The equation of ACI-318 and AASHTO 1994 were not matched with test results and had no correlations, and the proposed equation was well matched with test results. So the proposed equation in this paper will be a effective basis for the evaluation of external tendons in analysis and design.

Nonlinear analysis of prestressed concrete structures considering slip behavior of tendons

  • Kwak, Hyo-Gyoung;Kim, Jae-Hong;Kim, Sun-Hoon
    • Computers and Concrete
    • /
    • 제3권1호
    • /
    • pp.43-64
    • /
    • 2006
  • A tendon model that can effectively be used in finite element analyses of prestressed concrete (PSC) structures with bonded tendons is proposed on the basis of the bond characteristics between a tendon and its surrounding concrete. Since tensile forces between adjacent cracks are transmitted from a tendon to concrete by bond forces, the constitutive law of a bonded tendon stiffened by grouting is different from that of a bare tendon. Accordingly, the apparent yield stress of an embedded tendon is determined from the bond-slip relationship. The definition of the multi-linear average stress-strain relationship is then obtained through a linear interpolation of the stress difference at the post-yielding stage. Unlike in the case of a bonded tendon, on the other hand, a stress increase beyond the effective prestress in an unbonded tendon is not section-dependent but member-dependent. The tendon stress unequivocally represents a uniform distribution along the length when the friction loss is excluded. Thus, using a strain reduction factor, the modified stress-strain curve of an unbonded tendon is derived by successive iterations. The validity of the proposed two tendon models is verified through correlation studies between analytical and experimental results for PSC beams and slabs.

비부착 긴장재를 갖는 프리스트레스트 콘크리트 보에서 긴장재 응력의 과대평가 (Overestimation of Ultimate Tendon Stress in a Prestressed Concrete Beam with Unbonded Tendons)

  • 이종윤;임재형;문정호;신경재
    • 콘크리트학회논문집
    • /
    • 제11권4호
    • /
    • pp.73-81
    • /
    • 1999
  • The present study is to examine the ACI code equations for computing the unbonded tendon stress at flexural failure of prestressed beams. The equations examined for their validity are Eq. 18-4 and Eq. 18-5 of the ACI 318-95. Since the possibility of overestimation was expected with the equations, a numerical study, first, was carried out with influential variables included. From this study, it was found that amount of reinforcements, effective prestress, location of tendons, and loading type may affect the overestimation of the unbonded tendon stress. Then, an experimental study was carried out with those variables. A total of 8 specimens was tested to prove the theoretical findings as well as the effect of those variables. As a result. it was proven that the ACI Code equations can overestimate significantly the unbonded tendon stress for certain cases.

외부 부분 부착 PSC 보의 휨거동 실험 (An Experiment of Flexural Behavior for the Prestressed Concrete Beams with Partially Bonded External Tendons)

  • 유성원;이상준
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.141-147
    • /
    • 2012
  • Recently, the external prestressed concrete structures are increasingly being built. The mechanical behavior of prestressed concrete beams with external tendon is different from that of normal bonded PSC beams in that the increment of tendon stress was derived by whole member behavior. By this reason, the ultimate stress of external tendon is smaller than that of bonded tendon or internal unbonded tendon. The purposes of the present paper are therefore to improve the mechanical behavior of external unbonded tendon by using partially bonded external tendon and to evaluate the flexural behavior of partially bonded external tendon by the flexural member experiment. From the experimental results, before flexural cracking, there was no difference between external unbonded, partially bonded and bonded tendons. However, after cracking, yielding load of reinforcement, ultimate load, and tendon stress were increased in the sequence of external unbonded, partially bonded and bonded tendon members. The equation of ACI-318 and AASHTO 1994 were not matched with test results and had no correlations. So the newly proposed equation will be needed including the consideration of tendon profile, tendon bonded type, and so on. The proposed partially bonded external tendon in this paper will be a effective basis for the evaluation of external tendons in construction and design.

극한하중상태에서 비부착 긴장재의 응력평가에 관한 실험연구 (Experimental Study on Stress Evaluation Study on Stress Evaluation of Unbonded Tendon under Ultimate Load)

  • 임재형;문정호;이리형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 봄 학술발표회논문집(II)
    • /
    • pp.519-524
    • /
    • 1998
  • The current study is a part of series of research about the evaluation method of the unbonded tendon stress in prestressed concrete member at flexural failure. As the experimental study, a test program with 14 beams and slabs was planed to identify the contribution of each important variable. The variables are (1) the effective prestress, (2) the concrete strength, (3) the amount of tendons (4) the amount of bonded reinforcements, (5) the loading type, (6) the span/depth ratio. It was found that the tendon stress increment decreases as the effective prestress increases. Also, the contributions of concrete strength, amount of tendons, bonded reinforcements, and loading type were observed to affect on tendon stresses. However, the tendon stress increments were minimal at high values of span/depth in contrast with the ACI Code.

  • PDF

규격별 비부착 긴장재의 극한응력식에 대한 비교 연구 (A Comparitive Study on the Ultimate Tendon Stress of Unbonded Tendon According to Various Codes)

  • 유성원;서정인
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.501-506
    • /
    • 2002
  • The unbonded prestressed concrete(PSC) members exhibit very different structural behavior from that of bonded PSC members because of having different tendon stress increment. Recently, AASHTO changed the provision of ultimate tendon stress with unbonded tendons, because some researches tried to improve the provision of ultimate tendon stress with unbonded tendons. The purpose of the present study is to compare various Codes with the ultimate failure stresses of prestressing(PS) steels for the unbonded PSC members. To this end, Some national Codes have been collected and analyzed. A series of major influencing variables have been included in the analysis. It was found that the span-depth ratio, neutral axis depth-effective depth ratio, concrete compressive strength, effective prestress, and prestressing steel ratio have great influence on the ultimate failure stress of PS steel in unbonded PSC members. The Comparison indicates that existing formulas including ACI and domestic Code's equations shows some unwarranties. The present study allows more realistic analysis and design of prestressed concrete structures with internal unbonded tendons.

  • PDF

비부착 긴장재의 응력산정을 위한 극한강도 설계식의 평가 (Evaluation of Ultimate Strength Design Equations for Stress Calculation of Unbonded Tendons)

  • 임재형;문정호;이리형
    • 콘크리트학회논문집
    • /
    • 제11권3호
    • /
    • pp.113-122
    • /
    • 1999
  • The present study is to investigate the possibility of overestimation or underestimation when the ACI Code equations are used to evaluate the unbonded tendon stress. An experimental program was planned with 6 beams which divided into two groups. Each group consisted of 3 beams to check the possibility of overestimation or underestimation of unbonded tendon stress. The experimental results were also compared with various design equations including the one proposed by Moon and Lim. It was proven that the ACI Code equations may overestimate or underestimate the unbonded tendon stress in certain cases.

강선량 및 긴장력에 따른 외부 강선을 가진 PSC 보의 휨거동 실험 (Experiment of Flexural Behavior of Prestressed Concrete Beams with External Tendons according to Tendon Area and Tendon Force)

  • 유성원;양인환;서정인
    • 콘크리트학회논문집
    • /
    • 제21권4호
    • /
    • pp.513-521
    • /
    • 2009
  • 최근 들어 외부 강선을 이용한 프리스트레스트 콘크리트구조물의 건설이 증가하고 있다. 그러나 극한거동 해석시 단면 적합조건을 이용하는 내부 부착 강선과는 다르게 외적 비부착 강선은 부재의 전체거동에 의해서 응력 증 가량이 결정된다. 또한 편향부에서의 미끌림 효과와 강선의 편심 변화 효과 등이 발생하게 된다. 따라서 본 연구는 외 부 강선을 가지는 프리스트레스트 콘크리트(PSC) 보의 거동 특성을 평가하기 위하여 강선량, 긴장력 등을 변수로 하여 정적 휨실험을 수행하여 외부 강선 부재의 휨거동 특성을 얻었다. 실험 결과에 의하면 균열발생 이전의 외부 강선 PSC 부재는 부착 강선 PSC부재와 거동 차이가 크지 않음을 알 수 있었다. 그러나 균열이 발생한 이후의 거동에서는 철근의 항복하중, 극한하중, 강선 응력 등이 외부 강선 부재에서의 값이 부착 강선 부재에 비해서 작게 나타나고 있다. 하중-강 선 변형률 관계에서 보면, 외부 강선 부재들의 경우, 하중 증가에 따른 외부 강선 변형률의 증가량은 초기 긴장력의 크 기 순서와 거의 반대의 순서로 외부 강선의 변형률이 증가한 것으로 나타났으나, 다만 초기 긴장력이 크다할지라도 강 선의 유효응력이 작은 경우의 강선 변형률은 강선의 유효응력이 큰 부재들보다는 다소 작게 증가하고 있는 것으로 나 타났다. 외부 강선 부재의 콘크리트에 발생된 압축 변형률의 크기는 외부 강선의 유효응력 크기 순서와 일치하는 것으 로 나타나, 콘크리트의 압축변형률은 외부 강선의 유효응력에 비례함을 알 수 있다. 실험 결과와 기존의 설계식과 비교 해본 결과, ACI-318에 의한 결과는 긴장력 혹은 유효응력이 차이를 전혀 반영하지 못하고 있고 특히, 그 결과가 실험 결과보다 상당히 작게 나타나, 지나치게 보수적인 것으로 판단된다. 한편 AASHTO 1994는 ACI-318과는 다르게 강선량, 초 기 힘 및 유효응력 등의 변화에 적절하게 영향을 받고 있는 것으로 나타났지만 내부 비부착 강선의 실험 결과를 이용 하여 작성된 이유로 외부 강선 실험 결과보다 지나치게 큰 결과를 유발하고 있는 것으로 평가된다. 이러한 이유로 외 부 강선의 극한응력을 정확하게 예측할 수 있는 새로운 규정이 필요하다.

정적 인발하중을 받는 암반 앵커의 거동;텐던-그라우트 경계면의 전단응력 분포 (Rock Anchors Subjected to Static Uplift Loads ; Shear Stress Distribution of Tendon-Grout Interface)

  • 임경필;조남준;황성일
    • 한국지반공학회논문집
    • /
    • 제15권6호
    • /
    • pp.143-154
    • /
    • 1999
  • 본 연구에서는 암반 앵커의 텐던-그라우트 경계면의 하중전달기구(load transfer mechanism)를 규명하기 위하여 암질이 강한 자연 화강암과 콘크리트로 제작된 모형 암반에 시공된 모형 암반 앵커에 대한 정적 인발험(static uplift test)을 수행하였다. 불연속면이 텐던-그라우트의 전단응력 분포에 미치는 영향을 밝히기 위하여 수평한 절리면을 갖고 있는 모형암반도 제작되었다. 실험 결과 불연속면이 없는 암반에 시공된 암반 앵커의 경우 앵커 상단에 심한 응력 집중이 발생함을 알 수 있었고 불연속면이 증가할수록 깊이에 따라 균일한 전단응력 분포를 나타냈다. 또한, 실험결과에 대한 회귀분석을 통하여 텐던-그라우트 경계면의 전단응력 분포에 관한 경험식을 산정하였으며, 실험에 의한 전단응력 분포는 텐던 직경의 2~3배 깊이에서는 이론에 의한 전단응력 분포 보다 작게 나타나고 그 이하에서는 반대 현상을 관찰할 수 있었다.

  • PDF

Data-driven SIRMs-connected FIS for prediction of external tendon stress

  • Lau, See Hung;Ng, Chee Khoon;Tay, Kai Meng
    • Computers and Concrete
    • /
    • 제15권1호
    • /
    • pp.55-71
    • /
    • 2015
  • This paper presents a novel harmony search (HS)-based data-driven single input rule modules (SIRMs)-connected fuzzy inference system (FIS) for the prediction of stress in externally prestressed tendon. The proposed method attempts to extract causal relationship of a system from an input-output pairs of data even without knowing the complete physical knowledge of the system. The monotonicity property is then exploited as an additional qualitative information to obtain a meaningful SIRMs-connected FIS model. This method is then validated using results from test data of the literature. Several parameters, such as initial tendon depth to beam ratio; deviators spacing to the initial tendon depth ratio; and distance of a concentrated load from the nearest support to the effective beam span are considered. A computer simulation for estimating the stress increase in externally prestressed tendon, ${\Delta}f_{ps}$, is then reported. The contributions of this paper is two folds; (i) it contributes towards a new monotonicity-preserving data-driven FIS model in fuzzy modeling and (ii) it provides a novel solution for estimating the ${\Delta}f_{ps}$ even without a complete physical knowledge of unbonded tendons.