• Title/Summary/Keyword: temporal network

Search Result 626, Processing Time 0.026 seconds

Similar Trajectory Retrieval on Road Networks using Spatio-Temporal Similarity (시공간 유사성을 이용한 도로 네트워크 상의 유사한 궤적 검색)

  • Hwang Jung-Rae;Kang Hye-Young;Li Ki-Joune
    • The KIPS Transactions:PartD
    • /
    • v.13D no.3 s.106
    • /
    • pp.337-346
    • /
    • 2006
  • In order to analyze the behavior of moving objects, a measure for determining the similarity of trajectories needs to be defined. Although research has been conducted that retrieved similar trajectories of moving objects in Euclidean space, very little research has been conducted on moving objects in the space defined by road networks. In terms of real applications, most moving objects are located in road network space rather than in Euclidean space. In similarity measure between trajectories, however, previous methods were based on Euclidean distance and only considered spatial similarity. In this paper, we define similarity measure based on POI and TOI in road network space. With this definition, we present methods to retrieve similar trajectories using spatio-temporal similarity between trajectories. We show clustering results for similar trajectories. Experimental results show that similar trajectories searched by each method and consistency rate between each method for the searched trajectories.

Combined Analysis Using Functional Connectivity of Default Mode Network Based on Independent Component Analysis of Resting State fMRI and Structural Connectivity Using Diffusion Tensor Imaging Tractography (휴지기 기능적 자기공명영상의 독립성분분석기법 기반 내정상태 네트워크 기능 연결성과 확산텐서영상의 트랙토그래피 기법을 이용한 구조 연결성의 통합적 분석)

  • Choi, Hyejeong;Chang, Yongmin
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.684-694
    • /
    • 2021
  • Resting-state Functional Magnetic Resonance Imaging(fMRI) data detects the temporal correlations in Blood Oxygen Level Dependent(BOLD) signal and these temporal correlations are regarded to reflect intrinsic cortical connectivity, which is deactivated during attention demanding, non-self referential tasks, called Default Mode Network(DMN). The relationship between fMRI and anatomical connectivity has not been studied in detail, however, the preceded studies have tried to clarify this relationship using Diffusion Tensor Imaging(DTI) and fMRI. These studies use method that fMRI data assists DTI data or vice versa and it is used as guider to perform DTI tractography on the brain image. In this study, we hypothesized that functional connectivity in resting state would reflect anatomical connectivity of DMN and the combined images include information of fMRI and DTI showed visible connection between brain regions related in DMN. In the previous study, functional connectivity was determined by subjective region of interest method. However, in this study, functional connectivity was determined by objective and advanced method through Independent Component Analysis. There was a stronger connection between Posterior Congulate Cortex(PCC) and PHG(Parahippocampa Gyrus) than Anterior Cingulate Cortex(ACC) and PCC. This technique might be used in several clinical field and will be the basis for future studies related to aging and the brain diseases, which are needed to be translated not only functional connectivity, but structural connectivity.

Interactive Visual Analytic Approach for Anomaly Detection in BGP Network Data (BGP 네트워크 데이터 내의 이상징후 감지를 위한 인터랙티브 시각화 분석 기법)

  • Choi, So-mi;Kim, Son-yong;Lee, Jae-yeon;Kauh, Jang-hyuk;Kwon, Koo-hyung;Choo, Jae-gul
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.135-143
    • /
    • 2022
  • As the world has implemented social distancing and telecommuting due to the spread of COVID-19, real-time streaming sessions based on routing protocols have increased dependence on the Internet due to the activation of video and voice-related content services and cloud computing. BGP is the most widely used routing protocol, and although many studies continue to improve security, there is a lack of visual analysis to determine the real-time nature of analysis and the mis-detection of algorithms. In this paper, we analyze BGP data, which are powdered as normal and abnormal, on a real-world basis, using an anomaly detection algorithm that combines statistical and post-processing statistical techniques with Rule-based techniques. In addition, we present an interactive spatio-temporal analysis plan as an intuitive visualization plan and analysis result of the algorithm with a map and Sankey Chart-based visualization technique.

HSFE Network and Fusion Model based Dynamic Hand Gesture Recognition

  • Tai, Do Nhu;Na, In Seop;Kim, Soo Hyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.9
    • /
    • pp.3924-3940
    • /
    • 2020
  • Dynamic hand gesture recognition(d-HGR) plays an important role in human-computer interaction(HCI) system. With the growth of hand-pose estimation as well as 3D depth sensors, depth, and the hand-skeleton dataset is proposed to bring much research in depth and 3D hand skeleton approaches. However, it is still a challenging problem due to the low resolution, higher complexity, and self-occlusion. In this paper, we propose a hand-shape feature extraction(HSFE) network to produce robust hand-shapes. We build a hand-shape model, and hand-skeleton based on LSTM to exploit the temporal information from hand-shape and motion changes. Fusion between two models brings the best accuracy in dynamic hand gesture (DHG) dataset.

Human Gait Recognition Based on Spatio-Temporal Deep Convolutional Neural Network for Identification

  • Zhang, Ning;Park, Jin-ho;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.927-939
    • /
    • 2020
  • Gait recognition can identify people's identity from a long distance, which is very important for improving the intelligence of the monitoring system. Among many human features, gait features have the advantages of being remotely available, robust, and secure. Traditional gait feature extraction, affected by the development of behavior recognition, can only rely on manual feature extraction, which cannot meet the needs of fine gait recognition. The emergence of deep convolutional neural networks has made researchers get rid of complex feature design engineering, and can automatically learn available features through data, which has been widely used. In this paper,conduct feature metric learning in the three-dimensional space by combining the three-dimensional convolution features of the gait sequence and the Siamese structure. This method can capture the information of spatial dimension and time dimension from the continuous periodic gait sequence, and further improve the accuracy and practicability of gait recognition.

A Study for Snoring Detection Based Artificial Neural Network (신경망 기반의 코골이 검출 알고리즘 개발에 관한 연구)

  • Jang, Won-Kyu;Cho, Sung-Pil;Lee , Kyung-Joung
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.7
    • /
    • pp.327-333
    • /
    • 2002
  • In this study, we developed a snoring detection algorithm that detects snores automatically. It consists of preprocessing and snoring detection part. The preprocessing part is composed of a noise removal part using spectrum subtraction, and segmentation part, and computation part of temporal and spectral features. And the snoring detection part decides whether detected blocks are snores with BPNN(Back-Propagation Neural Network). BPNN with one hidden layer and one output layer, is trained with data of 7 subjects and tested with data of 11 subjects of total 18 subjects. The proposed algorithm showed a Sensitivity of 90.41% and a Predictive Positive Value of 84.95%.

An Accurate Method to Estimate Traffic Matrices from Link Loads for QoS Provision

  • Wang, Xingwei;Jiang, Dingde;Xu, Zhengzheng;Chen, Zhenhua
    • Journal of Communications and Networks
    • /
    • v.12 no.6
    • /
    • pp.624-631
    • /
    • 2010
  • Effective traffic matrix estimation is the basis of efficient traffic engineering, and therefore, quality of service provision support in IP networks. In this study, traffic matrix estimation is investigated in IP networks and an Elman neural network-based traffic matrix inference (ENNTMI) method is proposed. In ENNTMI, the conventional Elman neural network is modified to capture the spatio-temporal correlations and the time-varying property, and certain side information is introduced to help estimate traffic matrix in a network accurately. The regular parameter is further introduced into the optimal equation. Thus, the highly ill-posed nature of traffic matrix estimation is overcome effectively and efficiently.

A Multimedia Presentation Model in Distributed Environments (분산 환경에서의 멀티미디어 프리젠테이션 모델)

  • 최숙영
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.1
    • /
    • pp.16-24
    • /
    • 2000
  • In the distributed multimedia document system, media objects distributed over a computer network are retrieved from their sources and presented to users according to specifed temporal relations. For effective presentation, synchronization have to he supported. Furthermore, presentation in distributed environments is influenced by network band with and delay, so they have to be considered for synchronization. This paper propose a distributed multimedia presentation model that supports synchronization effectively. In this model, when media objects are transfered from servers to a client, network situation and resources are monitored and thus a feedback message for change of them is sent to sever. Then, the sever adjusts the data sending rate to control synchronization.

  • PDF

A GPD-BASED DISCRIMINATIVE TRAINING ALGORITHM FOR PREDICTIVE NEURAL NETWORK MODELS

  • Na, Kyung-Min;Rheem, Jae-Yeol;Ann, Sou-Guil
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.997-1002
    • /
    • 1994
  • Predictive neural network models are powerful speech recognition models based on a nonlinear pattern prediction. Those models can effectively normalize the temporal and spatial variability of speech signals. But those models suffer from poor discrimination between acoustically similar words. In this paper, we propose a discriminative training algorithm for predictive neural network models based on a generalized probabilistic descent (GPD) algorithm and minimum classification error formulation (MCEF). The Evaluation of our training algorithm on ten Korean digits shows its effectiveness by 40% reduction of recognition error.

  • PDF

Bio-Adhoc Sensor Network for Disaster Emergency Management Systems (재난 관리용 시스템을 위한 센서 탑재 바이오 Ad hoc 네트워크 구축방안 연구)

  • Lee, Dong-Eun;Lee, Goo-Yeon
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.775-776
    • /
    • 2006
  • Ad hoc network does not need any preexisting network infrastructure, and it has been developed as temporal networks in the various fields. Infostation is an efficient system to transfer information which does not have delay sensitive characteristics. In this paper, we propose a disaster emergency management system using sensor attached animals' mobility combined with infostation system. We also analyze the performance of the proposed system. From the performance analysis results, we expect that the proposed system will be very useful to early detect big forest fires which occurs frequently in Korea mountain areas.

  • PDF