• Title/Summary/Keyword: temporal network

Search Result 613, Processing Time 0.027 seconds

A Study on Co-evolution on the Formation Process of Space and Network focused on Knowledge Intensive Industry (지식집약산업의 공간과 네트워크 형성과정에 대한 공진화적 고찰)

  • Choi, HaeOk
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.628-641
    • /
    • 2012
  • This research investigates a dynamic mechanism underlying the co-evolution between network and space by applying hype-curve model, typical phenomenon which shows how new technologies and ideas initially adapted in the society. This study analysis the knowledge intensive industry of digital contents using social network analysis (SNA) in terms of structural, spatial, and temporal aspects, year of 2000, 2005, and 2010 focused on Seoul area. First of all, network and space establish 'inter-feedback' as a result of evolution and differentiation process. Second, it happen temporal 'delay' through the learning process stage of 'peak of inflated expectation' and 'trough of disillusionment.' As a result, Seoul develops with the technology commercialized-orient strategy affect government policy. This trend changes to technology-oriented development in Seoul area in the late of 2000 established 'self-organization' with geographical proximity organizations through learning process.

  • PDF

Social Media based Real-time Event Detection by using Deep Learning Methods

  • Nguyen, Van Quan;Yang, Hyung-Jeong;Kim, Young-chul;Kim, Soo-hyung;Kim, Kyungbaek
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.41-48
    • /
    • 2017
  • Event detection using social media has been widespread since social network services have been an active communication channel for connecting with others, diffusing news message. Especially, the real-time characteristic of social media has created the opportunity for supporting for real-time applications/systems. Social network such as Twitter is the potential data source to explore useful information by mining messages posted by the user community. This paper proposed a novel system for temporal event detection by analyzing social data. As a result, this information can be used by first responders, decision makers, or news agents to gain insight of the situation. The proposed approach takes advantages of deep learning methods that play core techniques on the main tasks including informative data identifying from a noisy environment and temporal event detection. The former is the responsibility of Convolutional Neural Network model trained from labeled Twitter data. The latter is for event detection supported by Recurrent Neural Network module. We demonstrated our approach and experimental results on the case study of earthquake situations. Our system is more adaptive than other systems used traditional methods since deep learning enables to extract the features of data without spending lots of time constructing feature by hand. This benefit makes our approach adaptive to extend to a new context of practice. Moreover, the proposed system promised to respond to acceptable delay within several minutes that will helpful mean for supporting news channel agents or belief plan in case of disaster events.

Graph Convolutional - Network Architecture Search : Network architecture search Using Graph Convolution Neural Networks (그래프 합성곱-신경망 구조 탐색 : 그래프 합성곱 신경망을 이용한 신경망 구조 탐색)

  • Su-Youn Choi;Jong-Youel Park
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.649-654
    • /
    • 2023
  • This paper proposes the design of a neural network structure search model using graph convolutional neural networks. Deep learning has a problem of not being able to verify whether the designed model has a structure with optimized performance due to the nature of learning as a black box. The neural network structure search model is composed of a recurrent neural network that creates a model and a convolutional neural network that is the generated network. Conventional neural network structure search models use recurrent neural networks, but in this paper, we propose GC-NAS, which uses graph convolutional neural networks instead of recurrent neural networks to create convolutional neural network models. The proposed GC-NAS uses the Layer Extraction Block to explore depth, and the Hyper Parameter Prediction Block to explore spatial and temporal information (hyper parameters) based on depth information in parallel. Therefore, since the depth information is reflected, the search area is wider, and the purpose of the search area of the model is clear by conducting a parallel search with depth information, so it is judged to be superior in theoretical structure compared to GC-NAS. GC-NAS is expected to solve the problem of the high-dimensional time axis and the range of spatial search of recurrent neural networks in the existing neural network structure search model through the graph convolutional neural network block and graph generation algorithm. In addition, we hope that the GC-NAS proposed in this paper will serve as an opportunity for active research on the application of graph convolutional neural networks to neural network structure search.

EEG Signal Prediction by using State Feedback Real-Time Recurrent Neural Network (상태피드백 실시간 회귀 신경회망을 이용한 EEG 신호 예측)

  • Kim, Taek-Soo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.1
    • /
    • pp.39-42
    • /
    • 2002
  • For the purpose of modeling EEG signal which has nonstationary and nonlinear dynamic characteristics, this paper propose a state feedback real time recurrent neural network model. The state feedback real time recurrent neural network is structured to have memory structure in the state of hidden layers so that it has arbitrary dynamics and ability to deal with time-varying input through its own temporal operation. For the model test, Mackey-Glass time series is used as a nonlinear dynamic system and the model is applied to the prediction of three types of EEG, alpha wave, beta wave and epileptic EEG. Experimental results show that the performance of the proposed model is better than that of other neural network models which are compared in this paper in some view points of the converging speed in learning stage and normalized mean square error for the test data set.

Moving target detection by using the hierarchical spatiotemporal filters with orientation selectivity (방향성 계층적 시공간 필터에 의한 움직이는 물체의 검출)

  • 최태완;김재창;윤태훈;남기곤
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.9
    • /
    • pp.135-143
    • /
    • 1996
  • In this paper, we popose a neural network that detects edges of moving objects in an image using a neural network of hierarchical spatial filter with orientation selectivity. We modify the temporal difference network by adding a self loop to each neuraon cell to reduce the problems of phantom edge detected by the neural network proposed by kwon yool et al.. The modified neural network alleviates the phantom edges of moving objects, and also can detect edges of miving objects even for the noisy input. By computer simulation with real images, the proposed neural netowrk can extract edges of different orientation efficiently and also can reduce the phantom edges of moving objects.

  • PDF

A Structured Overlay Network Scheme Based on Multiple Different Time Intervals

  • Kawakami, Tomoya
    • Journal of Information Processing Systems
    • /
    • v.16 no.6
    • /
    • pp.1447-1458
    • /
    • 2020
  • This paper describes a structured overlay network scheme based on multiple different time intervals. Many types of data (e.g., sensor data) can be requested at specific time intervals that depend on the user and the system. These queries are referred to as "interval queries." A method for constructing an overlay network that efficiently processes interval queries based on multiple different time intervals is proposed herein. The proposed method assumes a ring topology and assigns nodes to a keyspace based on one-dimensional time information. To reduce the number of forwarded messages for queries, each node constructs shortcut links for each interval that users tend to request. This study confirmed that the proposed method reduces the number of messages needed to process interval queries. The contributions of this study include the clarification of interval queries with specific time intervals; establishment of a structured overlay network scheme based on multiple different time intervals; and experimental verification of the scheme in terms of communication load, delay, and maintenance cost.

A MapReduce-based Artificial Neural Network Churn Prediction for Music Streaming Service

  • Chen, Min
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.55-60
    • /
    • 2022
  • Churn prediction is a critical long-term problem for many business like music, games, magazines etc. The churn probability can be used to study many aspects of a business including proactive customer marketing, sales prediction, and churn-sensitive pricing models. It is quite challenging to design machine learning model to predict the customer churn accurately due to the large volume of the time-series data and the temporal issues of the data. In this paper, a parallel artificial neural network is proposed to create a highly-accurate customer churn model on a large customer dataset. The proposed model has achieved significant improvement in the accuracy of churn prediction. The scalability and effectiveness of the proposed algorithm is also studied.

In-network Distributed Event Boundary Computation in Wireless Sensor Networks: Challenges, State of the art and Future Directions

  • Jabeen, Farhana;Nawaz, Sarfraz
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2804-2823
    • /
    • 2013
  • Wireless sensor network (WSN) is a promising technology for monitoring physical phenomena at fine-grained spatial and temporal resolution. However, the typical approach of sending each sensed measurement out of the network for detailed spatial analysis of transient physical phenomena may not be an efficient or scalable solution. This paper focuses on in-network physical phenomena detection schemes, particularly the distributed computation of the boundary of physical phenomena (i.e. event), to support energy efficient spatial analysis in wireless sensor networks. In-network processing approach reduces the amount of network traffic and thus achieves network scalability and lifetime longevity. This study investigates the recent advances in distributed event detection based on in-network processing and includes a concise comparison of various existing schemes. These boundary detection schemes identify not only those sensor nodes that lie on the boundary of the physical phenomena but also the interior nodes. This constitutes an event geometry which is a basic building block of many spatial queries. In this paper, we introduce the challenges and opportunities for research in the field of in-network distributed event geometry boundary detection as well as illustrate the current status of research in this field. We also present new areas where the event geometry boundary detection can be of significant importance.

Design and Implementation of a Trajectory-based Index Structure for Moving Objects on a Spatial Network (공간 네트워크상의 이동객체를 위한 궤적기반 색인구조의 설계 및 구현)

  • Um, Jung-Ho;Chang, Jae-Woo
    • Journal of KIISE:Databases
    • /
    • v.35 no.2
    • /
    • pp.169-181
    • /
    • 2008
  • Because moving objects usually move on spatial networks, efficient trajectory index structures are required to achieve good retrieval performance on their trajectories. However, there has been little research on trajectory index structures for spatial networks such as FNR-tree and MON-tree. But, because FNR-tree and MON-tree are stored by the unit of the moving object's segment, they can't support the whole moving objects' trajectory. In this paper, we propose an efficient trajectory index structure, named Trajectory of Moving objects on Network Tree(TMN Tree), for moving objects. For this, we divide moving object data into spatial and temporal attribute, and preserve moving objects' trajectory. Then, we design index structure which supports not only range query but trajectory query. In addition, we divide user queries into spatio-temporal area based trajectory query, similar-trajectory query, and k-nearest neighbor query. We propose query processing algorithms to support them. Finally, we show that our trajectory index structure outperforms existing tree structures like FNR-Tree and MON-Tree.

Analysis of the Spatio-temporal Migration and Degree Centrality of Migration Network (지역 간 시계열 인구이동의 정량적 특징 분석 및 인구이동 네트워크의 연결중심성 분석)

  • Lee, Sang-Hyun;Oh, Yun-Gyeong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.1-15
    • /
    • 2017
  • In this study, we visualized the regional migration in Korea from 2001 to 2015 using the Chord diagram which can represents amount of migration and flows at the same time. In addition, we constructed a migration network and analyzed the degree centrality of each region for identifying the main regions linking to various regions. In 2001~2005, most of population moved into Geonggi from various regions. However, the capital function was transferred to Sejong in 2011~2015, and population moving into Sejong and Chungnam was increased significantly. The main outflow of population in migration network were shown at the regions in Jeonbuk and Gyeongbuk province in 2001~2004, and recently the regions in Gyeongnam, Gyeonggi, and Seoul were identified as the main nodes in terms of outflow of population. We also focused on migration in rural area through degree centrality, and cord diagram in Chungnam, Jeonbuk, and Jeonnam where include the representative crop area. In 2015. there was the significant increase of migration from Gyeonggi to Chungnam, and internal migration within Jeonbuk increased rather than cross-border migration. In addition, migration from Jeonam to capital area decreased in 2015 but migration among cities within Jeonman increased. In particular, Yesan-gun showed the significant migration to other cities in Jeonnam. Population is necessary to develop community and sustain economic growth in rural regions. Therefore, migration is important for the transfer of manpower. The strength of this study is to approach the temporal change of migration from the viewpoint on quantitative and structural characteristics.