• Title/Summary/Keyword: temporal information

Search Result 2,614, Processing Time 0.032 seconds

Hole-filling Algorithm Based on Extrapolating Spatial-Temporal Background Information for View Synthesis in Free Viewpoint Television (자유 시점 TV에서 시점 합성을 위한 시공간적 배경 정보 추정 기반 홀 채움 방식)

  • Kim, Beomsu;Nguyen, Tien-Dat;Hong, Min-cheol
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.31-44
    • /
    • 2016
  • This paper presents a hole-filling algorithm based on extrapolating spatial-temporal background information used in view synthesis for free-viewpoint television. A new background codebook is constructed and updated in order to extract reliable temporal background information. In addition, an estimation of spatial local background values is conducted to discriminate an adaptive boundary between the background region and the foreground region as well as to update the information about the hole region. The holes then are filled by combining the spatial background information and the temporal background information. In addition, an exemplar-based inpainting technique is used to fill the rest of holes, in which a priority function using background-depth information is defined to determine the order in which the holes are filled. The experimental results demonstrated that the proposed algorithm outperformed the other comparative methods about average 0.3-0.6 dB, and that it synthesized satisfactory views regardless of video characteristics and type of hole region.

A Entropy Coding Method using Temporal and Spatial Correlation on HEVC (HEVC에서 시공간적 상관관계를 이용한 엔트로피 부호화 방법)

  • Kim, Tae-Ryong;Kim, Kyung-Yong;Lee, Han-Soo;Park, Gwang-Hoon
    • Journal of Broadcast Engineering
    • /
    • v.17 no.1
    • /
    • pp.191-194
    • /
    • 2012
  • The split flag and the skip flag in CU syntax have high correlation on spatial domain as well as temporal domain. This paper suggests a method for enhancing coding efficiency by using not only spatial correlation but also temporal correlation when coding CU information. In the CABAC case, temporal collocated CU information is used for selecting context model of the split flag and the skip flag. In the CAVLC case, current CU information is estimated from temporal collocated CU information then encoded. As a result, a coding efficiency was increased by 0.1%~0.6% in CABAC, 0.1%~0.4% in CAVLC compared with HM 3.0. This method shows better performance on lowdelay condition which uses reference frame close to current frame.

Spatio-temporal Semantic Features for Human Action Recognition

  • Liu, Jia;Wang, Xiaonian;Li, Tianyu;Yang, Jie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.10
    • /
    • pp.2632-2649
    • /
    • 2012
  • Most approaches to human action recognition is limited due to the use of simple action datasets under controlled environments or focus on excessively localized features without sufficiently exploring the spatio-temporal information. This paper proposed a framework for recognizing realistic human actions. Specifically, a new action representation is proposed based on computing a rich set of descriptors from keypoint trajectories. To obtain efficient and compact representations for actions, we develop a feature fusion method to combine spatial-temporal local motion descriptors by the movement of the camera which is detected by the distribution of spatio-temporal interest points in the clips. A new topic model called Markov Semantic Model is proposed for semantic feature selection which relies on the different kinds of dependencies between words produced by "syntactic " and "semantic" constraints. The informative features are selected collaboratively based on the different types of dependencies between words produced by short range and long range constraints. Building on the nonlinear SVMs, we validate this proposed hierarchical framework on several realistic action datasets.

IMTAR: Incremental Mining of General Temporal Association Rules

  • Dafa-Alla, Anour F.A.;Shon, Ho-Sun;Saeed, Khalid E.K.;Piao, Minghao;Yun, Un-Il;Cheoi, Kyung-Joo;Ryu, Keun-Ho
    • Journal of Information Processing Systems
    • /
    • v.6 no.2
    • /
    • pp.163-176
    • /
    • 2010
  • Nowadays due to the rapid advances in the field of information systems, transactional databases are being updated regularly and/or periodically. The knowledge discovered from these databases has to be maintained, and an incremental updating technique needs to be developed for maintaining the discovered association rules from these databases. The concept of Temporal Association Rules has been introduced to solve the problem of handling time series by including time expressions into association rules. In this paper we introduce a novel algorithm for Incremental Mining of General Temporal Association Rules (IMTAR) using an extended TFP-tree. The main benefits introduced by our algorithm are that it offers significant advantages in terms of storage and running time and it can handle the problem of mining general temporal association rules in incremental databases by building TFP-trees incrementally. It can be utilized and applied to real life application domains. We demonstrate our algorithm and its advantages in this paper.

Robust Traffic Monitoring System by Spatio-Temporal Image Analysis (시공간 영상 분석에 의한 강건한 교통 모니터링 시스템)

  • 이대호;박영태
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.11
    • /
    • pp.1534-1542
    • /
    • 2004
  • A novel vision-based scheme of extracting real-time traffic information parameters is presented. The method is based on a region classification followed by a spatio-temporal image analysis. The detection region images for each traffic lane are classified into one of the three categories: the road, the vehicle, and the shadow, using statistical and structural features. Misclassification in a frame is corrected by using temporally correlated features of vehicles in the spatio-temporal image. Since only local images of detection regions are processed, the real-time operation of more than 30 frames per second is realized without using dedicated parallel processors, while ensuring detection performance robust to the variation of weather conditions, shadows, and traffic load.

PID-controlled Moving Objects Spatio-Temporal Model Algorithm for Identifying the Location of a Mobile Object in Real-time (이동체의 실시간 위치추적을 위한 PID제어 이동체 Spatio-Temporal 모델 알고리즘)

  • Wang, Zhi;Ying, Sun;Lee, Kyou-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.209-212
    • /
    • 2011
  • Triangulation is a typical method to locate or identify the location, which requires inherently at least three pre-recognized reference points. In some cases, owing to out of reachability to communication facility the target node can not reachable always to three base stations. This paper presents a predictive method, which can estimate the location of the moving target node in real time even though the target could not get in touch with all three base stations. The method is based on the PID-controlled Moving Objects Spatio-Temporal Model Algorithm. This can predict the moving direction of the moving target, and then combine with the past target position information to judge accurately the location.

  • PDF

Imputation of Medical Data Using Subspace Condition Order Degree Polynomials

  • Silachan, Klaokanlaya;Tantatsanawong, Panjai
    • Journal of Information Processing Systems
    • /
    • v.10 no.3
    • /
    • pp.395-411
    • /
    • 2014
  • Temporal medical data is often collected during patient treatments that require personal analysis. Each observation recorded in the temporal medical data is associated with measurements and time treatments. A major problem in the analysis of temporal medical data are the missing values that are caused, for example, by patients dropping out of a study before completion. Therefore, the imputation of missing data is an important step during pre-processing and can provide useful information before the data is mined. For each patient and each variable, this imputation replaces the missing data with a value drawn from an estimated distribution of that variable. In this paper, we propose a new method, called Newton's finite divided difference polynomial interpolation with condition order degree, for dealing with missing values in temporal medical data related to obesity. We compared the new imputation method with three existing subspace estimation techniques, including the k-nearest neighbor, local least squares, and natural cubic spline approaches. The performance of each approach was then evaluated by using the normalized root mean square error and the statistically significant test results. The experimental results have demonstrated that the proposed method provides the best fit with the smallest error and is more accurate than the other methods.

A Missing Value Replacement Method for Agricultural Meteorological Data Using Bayesian Spatio-Temporal Model (농업기상 결측치 보정을 위한 통계적 시공간모형)

  • Park, Dain;Yoon, Sanghoo
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.499-507
    • /
    • 2018
  • Agricultural meteorological information is an important resource that affects farmers' income, food security, and agricultural conditions. Thus, such data are used in various fields that are responsible for planning, enforcing, and evaluating agricultural policies. The meteorological information obtained from automatic weather observation systems operated by rural development agencies contains missing values owing to temporary mechanical or communication deficiencies. It is known that missing values lead to reduction in the reliability and validity of the model. In this study, the hierarchical Bayesian spatio-temporal model suggests replacements for missing values because the meteorological information includes spatio-temporal correlation. The prior distribution is very important in the Bayesian approach. However, we found a problem where the spatial decay parameter was not converged through the trace plot. A suitable spatial decay parameter, estimated on the bias of root-mean-square error (RMSE), which was determined to be the difference between the predicted and observed values. The latitude, longitude, and altitude were considered as covariates. The estimated spatial decay parameters were 0.041 and 0.039, for the spatio-temporal model with latitude and longitude and for latitude, longitude, and altitude, respectively. The posterior distributions were stable after the spatial decay parameter was fixed. root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and bias were calculated for model validation. Finally, the missing values were generated using the independent Gaussian process model.

Design and Implementation of Update Propagation Technique for Update Spatio-Temporal Data in Mobile Environments (모바일 환경에서 갱신된 시공간 데이터의 변경전파 기법의 설계 및 구현)

  • Kim, Hong-Ki;Kim, Dogn-Hyun;Cho, Dae-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.2
    • /
    • pp.395-403
    • /
    • 2011
  • Various studies were performed for providing the latest spatio-temporal information in mobile GIS Environments. The two-way synchronization scheme collects updated spatio-temporal data in the field and synchronizes with a server by using the wireless network. However, the other mobile terminals have to perform periodically synchronizes with a server. In this paper, we propose the update propagation scheme about spatio-temporal data collected from the mobile terminal. The update propagation scheme does considering various factors where an influence is in the update propagation. Therefore, it provides various update propagation policies according to each factors.

Continuous Spatio-Temporal Self-Join Queries over Stream Data of Moving Objects for Symbolic Space (기호공간에서 이동객체 스트림 데이터의 연속 시공간 셀프조인 질의)

  • Hwang, Byung-Ju;Li, Ki-Joune
    • Spatial Information Research
    • /
    • v.18 no.1
    • /
    • pp.77-87
    • /
    • 2010
  • Spatio-temporal join operators are essential to the management of spatio-temporal data such as moving objects. For example, the join operators are parts of processing to analyze movement of objects and search similar patterns of moving objects. Various studies on spatio-temporal join queries in outdoor space have been done. Recently with advance of indoor positioning techniques, location based services are required in indoor space as well as outdoor space. Nevertheless there is no one about processing of spatio-temporal join query in indoor space. In this paper, we introduce continuous spatio-temporal self-join queries in indoor space and propose a method of processing of the join queries over stream data of moving objects. The continuous spatio-temporal self-join query is to update the joined result set satisfying spatio-temporal predicates continuously. We assume that positions of moving objects are represented by symbols such as a room or corridor. This paper proposes a data structure, called Candidate Pairs Buffer, to filter and maintain massive stream data efficiently and we also investigate performance of proposed method in experimental study.