• Title/Summary/Keyword: temporal clustering

Search Result 122, Processing Time 0.027 seconds

A Data-Centric Clustering Algorithm for Reducing Network Traffic in Wireless Sensor Networks (무선 센서 네트워크에서 네트워크 트래픽 감소를 위한 데이타 중심 클러스터링 알고리즘)

  • Yeo, Myung-Ho;Lee, Mi-Sook;Park, Jong-Guk;Lee, Seok-Jae;Yoo, Jae-Soo
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.2
    • /
    • pp.139-148
    • /
    • 2008
  • Many types of sensor data exhibit strong correlation in both space and time. Suppression, both temporal and spatial, provides opportunities for reducing the energy cost of sensor data collection. Unfortunately, existing clustering algorithms are difficult to utilize the spatial or temporal opportunities, because they just organize clusters based on the distribution of sensor nodes or the network topology but not correlation of sensor data. In this paper, we propose a novel clustering algorithm with suppression techniques. To guarantee independent communication among clusters, we allocate multiple channels based on sensor data. Also, we propose a spatio-temporal suppression technique to reduce the network traffic. In order to show the superiority of our clustering algorithm, we compare it with the existing suppression algorithms in terms of the lifetime of the sensor network and the site of data which have been collected in the base-station. As a result, our experimental results show that the size of data was reduced by $4{\sim}40%$, and whole network lifetime was prolonged by $20{\sim}30%$.

Photo Clustering using Maximal Clique Finding Algorithm and Its Visualized Interface (최대 클리크 찾기 알고리즘을 이용한 사진 클러스터링 방법과 사진 시각화 인터페이스)

  • Ryu, Dong-Sung;Cho, Hwan-Gue
    • Journal of the Korea Computer Graphics Society
    • /
    • v.16 no.4
    • /
    • pp.35-40
    • /
    • 2010
  • Due to the distribution of digital camera, many work for photo management has been studied. However, most work use a sequential grid layout which arranges photos considering one criterion of digital photo. This interface makes users have lots of scrolling and concentrate ability when they manage their photos. In this paper, we propose a clustering method based on a temporal sequence considering their color similarity in detail. First we cluster photos using Cooper's event clustering method. Second, we makes more detailed clusters from each clustered photo set, which are clustered temporal clustering before, using maximal clique finding algorithm of interval graph. Finally, we arrange each detailed dusters on a user screen with their overlap keeping their temporal sequence. In order to evaluate our proposed system, we conducted on user studies based on a simple questionnaire.

A study on fuzzy constraint line clustering for optical flow estimation (Optical Flow 추정을 위한 Fuzzy constraint Line Clustering에 관한 연구)

  • 김현주;강해석;이상홍;김문현
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.9
    • /
    • pp.150-158
    • /
    • 1994
  • In this paepr, Fuzzy Constraint Line Clustering (FCLC) method for optical flow estimation is proposed. FCLC represents the spatical and temporal gradients as fuzzy sets. Based on these sets, several constraint lines with different membership values are generated for the poxed whose velocity is to be estimated. We describe the process for obtaining the membership values of the spatial and temporal gradients and that of the corresponding constraint line. We also show the process for deciding the tightest cluster of point formalated by intersection between constraint lines. For the synthetic and real images, the results of FCLC are compared with of CLC.

  • PDF

Clustering and classification of residential noise sources in apartment buildings based on machine learning using spectral and temporal characteristics (주파수 및 시간 특성을 활용한 머신러닝 기반 공동주택 주거소음의 군집화 및 분류)

  • Jeong-hun Kim;Song-mi Lee;Su-hong Kim;Eun-sung Song;Jong-kwan Ryu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.603-616
    • /
    • 2023
  • In this study, machine learning-based clustering and classification of residential noise in apartment buildings was conducted using frequency and temporal characteristics. First, a residential noise source dataset was constructed . The residential noise source dataset was consisted of floor impact, airborne, plumbing and equipment noise, environmental, and construction noise. The clustering of residential noise was performed by K-Means clustering method. For frequency characteristics, Leq and Lmax values were derived for 1/1 and 1/3 octave band for each sound source. For temporal characteristics, Leq values were derived at every 6 ms through sound pressure level analysis for 5 s. The number of k in K-Means clustering method was determined through the silhouette coefficient and elbow method. The clustering of residential noise source by frequency characteristic resulted in three clusters for both Leq and Lmax analysis. Temporal characteristic clustered residential noise source into 9 clusters for Leq and 11 clusters for Lmax. Clustering by frequency characteristic clustered according to the proportion of low frequency band. Then, to utilize the clustering results, the residential noise source was classified using three kinds of machine learning. The results of the residential noise classification showed the highest accuracy and f1-score for data labeled with Leq values in 1/3 octave bands, and the highest accuracy and f1-score for classifying residential noise sources with an Artificial Neural Network (ANN) model using both frequency and temporal features, with 93 % accuracy and 92 % f1-score.

Spatio-temporal Query Clustering: A Data Cubing Approach (시공간 질의 클러스터링: 데이터 큐빙 기법)

  • Chen, Xiangrui;Baek, Sung-Ha;Bae, Hae-Young
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.287-288
    • /
    • 2009
  • Multi-query optimization (MQO) is a critical research issue in the real-time data stream management system (DSMS). We propose to address this problem in the ubiquitous GIS (u-GIS) environment, focusing on grouping 'similar' spatio-temporal queries incrementally into N clusters so that they can be processed virtually as N queries. By minimizing N, the overlaps in the data requirements of the raw queries can be avoided, which implies the reducing of the total disk I/O cost. In this paper, we define the spatio-temporal query clustering problem and give a data cubing approach (Q-cube), which is expected to be implemented in the cloud computing paradigm.

Consensus Clustering for Time Course Gene Expression Microarray Data

  • Kim, Seo-Young;Bae, Jong-Sung
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.335-348
    • /
    • 2005
  • The rapid development of microarray technologies enabled the monitoring of expression levels of thousands of genes simultaneously. Recently, the time course gene expression data are often measured to study dynamic biological systems and gene regulatory networks. For the data, biologists are attempting to group genes based on the temporal pattern of their expression levels. We apply the consensus clustering algorithm to a time course gene expression data in order to infer statistically meaningful information from the measurements. We evaluate each of consensus clustering and existing clustering methods with various validation measures. In this paper, we consider hierarchical clustering and Diana of existing methods, and consensus clustering with hierarchical clustering, Diana and mixed hierachical and Diana methods and evaluate their performances on a real micro array data set and two simulated data sets.

A Study of Criterion for Efficient Clustering Estimation of Temporal Data (Temporal 데이터의 효율적 군집 추정을 위한 기준 연구)

  • Jeon, Jin-Ho;Kim, Min-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.5
    • /
    • pp.139-144
    • /
    • 2011
  • Most real world system such as world economy, management, medical and engineering applications contain a series of complex phenomena. One of common methods to understand these system is to build a model and analyze the behavior of the system. As a first step, Determining the best clusters on data. As a second step, Determining the model of the cluster. In this paper, we investigated heuristic search methods for efficient clustering. It is also confirmed that the Bayesian Information Criterion more reliable than Cheeseman-Stutz ones.

Abnormal Behavior Recognition Based on Spatio-temporal Context

  • Yang, Yuanfeng;Li, Lin;Liu, Zhaobin;Liu, Gang
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.612-628
    • /
    • 2020
  • This paper presents a new approach for detecting abnormal behaviors in complex surveillance scenes where anomalies are subtle and difficult to distinguish due to the intricate correlations among multiple objects' behaviors. Specifically, a cascaded probabilistic topic model was put forward for learning the spatial context of local behavior and the temporal context of global behavior in two different stages. In the first stage of topic modeling, unlike the existing approaches using either optical flows or complete trajectories, spatio-temporal correlations between the trajectory fragments in video clips were modeled by the latent Dirichlet allocation (LDA) topic model based on Markov random fields to obtain the spatial context of local behavior in each video clip. The local behavior topic categories were then obtained by exploiting the spectral clustering algorithm. Based on the construction of a dictionary through the process of local behavior topic clustering, the second phase of the LDA topic model learns the correlations of global behaviors and temporal context. In particular, an abnormal behavior recognition method was developed based on the learned spatio-temporal context of behaviors. The specific identification method adopts a top-down strategy and consists of two stages: anomaly recognition of video clip and anomalous behavior recognition within each video clip. Evaluation was performed using the validity of spatio-temporal context learning for local behavior topics and abnormal behavior recognition. Furthermore, the performance of the proposed approach in abnormal behavior recognition improved effectively and significantly in complex surveillance scenes.

Classification of Land Cover on Korean Peninsula Using Multi-temporal NOAA AVHRR Imagery

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.381-392
    • /
    • 2003
  • Multi-temporal approaches using sequential data acquired over multiple years are essential for satisfactory discrimination between many land-cover classes whose signatures exhibit seasonal trends. At any particular time, the response of several classes may be indistinguishable. A harmonic model that can represent seasonal variability is characterized by four components: mean level, frequency, phase and amplitude. The trigonometric components of the harmonic function inherently contain temporal information about changes in land-cover characteristics. Using the estimates which are obtained from sequential images through spectral analysis, seasonal periodicity can be incorporates into multi-temporal classification. The Normalized Difference Vegetation Index (NDVI) was computed for one week composites of the Advanced Very High Resolution Radiometer (AVHRR) imagery over the Korean peninsula for 1996 ~ 2000 using a dynamic technique. Land-cover types were then classified both with the estimated harmonic components using an unsupervised classification approach based on a hierarchical clustering algorithm. The results of the classification using the harmonic components show that the new approach is potentially very effective for identifying land-cover types by the analysis of its multi-temporal behavior.

Temporospatial clustering analysis of foot-and-mouth disease transmission in South Korea, 2010~2011 (시공간 클러스터링 분석을 이용한 2010~2011 국내 발생 구제역 전파양상)

  • Bae, Sun-Hak;Shin, Yeun-Kyung;Kim, Byunghan;Pak, Son-Il
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.1
    • /
    • pp.49-54
    • /
    • 2013
  • To investigate the transmission pattern of geographical area and temporal trends of the 2010~2011 foot-and-mouth disease (FMD) outbreaks in Korea, and to explore temporal intervals at which spatial clustering of FMD cases space-time analysis based on georeferenced database of 3,575 burial sites, from 30 November 2010 to 23 February 2011, was performed. The cases represent approximately 98.1% of all infected farms (n = 3,644) during the same period. Descriptive maps of spatial patterns of the outbreaks were generated by ArcGIS. Spatial Scan Statistics, using SaTScan software, was applied to investigate geographical clusters of FMD cases across the country. Overall, spatial heterogeneity was identified, and the transmission pattern was different by province. Cattle have more clusters in number but smaller in size, as compared to the swine population. In addition, spatiotemporal analysis and the comparison of clustering patterns between the first 7 days and days 8 to 14 of the outbreak revealed that the strongest spatial clustering was identified at the 7-day interval, although clustering over longer intervals (8~14 days) was also observed. We further discussed the importance of time period elapsed between FMD-suspected notice and the date of confirmation, and emphasized the necessity of region-specific and species-specific control measures.