• Title/Summary/Keyword: temporal and spatial patterns

Search Result 335, Processing Time 0.029 seconds

The Spatial and Temporal Analysis of Landscape Structure in Daegu Metropolitan Sphere (대구광역도시권의 시·공간적 경관구조 변화패턴 분석)

  • Choi, Won-Young;Jung, Sung-Gwan;Park, Kyung-Hun;Oh, Jeong-Hak;You, Ju-Han;Kim, Kyung-Tae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.8 no.2
    • /
    • pp.175-185
    • /
    • 2005
  • Governmental authorities have been trying to develop our city in respect to the growth of economy and it is true that their developmental policies have negative effects on ecosystem without doubt. To estimate these negative effects, this study is mainly focused on analysing the usage of the land according to the urban growth, and the temporal and spatial patterns between the elements which consist of the landscape of Daegu Metropolitan Sphere, by using the GIS method and the landscape indices. The results of the this study are as follow; the urban areas widened for $193.4km^2$ due to the shift of the urban function, and the forest areas were encroached for $455.6km^2$ into other landcover patterns. It was the shift of the agriculture areas that are given the most influence in those procedures since those developmental conditions are relatively satisfactory. Moreover the forest areas are structurally fragmented into the complicated form, and also the patterns of adjacent patches are become complex. These transitions are regarded as causes of increased external interventions to the forest areas, and these could possibly deteriorate the soundness of forest areas by reducing the core areas which are habitats of species. In conclusion, the results of this study evaluate the influence of much broader urban development on environment structure around urban and mutual relationship between them. In addition, it can provide methods and basic informations for the establishment of metropolitan urban plan after due considerations of the landscape ecological principle.

  • PDF

Spatial and Temporal Aspects of Phytoplankton Blooms in Complex Ecosystems Off the Korean Coast from Satellite Ocean Color Observations

  • Ahn, Yu-Hwan;Shanmugam, Palanisamy;Chang, Kyung-Il;Moon, Jeong-Eon;Ryu, Joo-Hyung
    • Ocean Science Journal
    • /
    • v.40 no.2
    • /
    • pp.67-78
    • /
    • 2005
  • Complex physical, chemical and biological interactions off the Korean coast created several striking patterns in the phytoplankton blooms, which became conspicuous during the measurements of ocean color from space. This study concentrated on analyzing the spatial and temporal aspects of phytoplankton chlorophyll variability in these areas using an integrated dataset from a Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Advanced Very High Resolution (AVHRR) sensor, and Conductivity Temperature Depth (CTD) sensor. The results showed that chlorophyll concentrations were elevated in coastal and open ocean regions, with strong summer and fall blooms, which appeared to spread out in most of the enclosed bays and neighboring waters due to certain oceanographic processes. The chlorophyll concentration was observed to range between 3 and $54\;mg\;m^{-3}$ inside Jin-hae Bay and adjacent coastal bays and 0.5 and $8\;mg\;m^{-3}$ in the southeast sea offshore waters, this gradual decrease towards oceanic waters suggested physical transports of phytoplankton blooms from the shallow shelves to slope waters through the influence of the Tsushima Warm Current (TWC) along the Tsushima Strait. Horizontal distribution of potential temperature $(\theta)$ and salinity (S) of water off the southeastern coast exhibited cold and low saline surface water $(\theta and warm and high saline subsurface water $({\theta}>12^{\circ}C; S>34.4)$ at 75dBar, corroborating TWC intrusion along the Tsushima Strait. An eastward branch of this current was called the East Korean Warm Current (EKWC), tracked with the help of CTD data and satellite-derived sea surface temperature, which often influenced the dynamics of mesoscale anticyclonic eddy fields off the Korean east coast during the summer season. The process of such mesoscale anticyclonic eddy features might have produced interior upwelling that could have shoaled and steepened the nutricline, enhancing phytoplankton population by advection or diffusion of nutrients in the vicinity of Ulleungdo in the East Sea.

Vision-Based Activity Recognition Monitoring Based on Human-Object Interaction at Construction Sites

  • Chae, Yeon;Lee, Hoonyong;Ahn, Changbum R.;Jung, Minhyuk;Park, Moonseo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.877-885
    • /
    • 2022
  • Vision-based activity recognition has been widely attempted at construction sites to estimate productivity and enhance workers' health and safety. Previous studies have focused on extracting an individual worker's postural information from sequential image frames for activity recognition. However, various trades of workers perform different tasks with similar postural patterns, which degrades the performance of activity recognition based on postural information. To this end, this research exploited a concept of human-object interaction, the interaction between a worker and their surrounding objects, considering the fact that trade workers interact with a specific object (e.g., working tools or construction materials) relevant to their trades. This research developed an approach to understand the context from sequential image frames based on four features: posture, object, spatial features, and temporal feature. Both posture and object features were used to analyze the interaction between the worker and the target object, and the other two features were used to detect movements from the entire region of image frames in both temporal and spatial domains. The developed approach used convolutional neural networks (CNN) for feature extractors and activity classifiers and long short-term memory (LSTM) was also used as an activity classifier. The developed approach provided an average accuracy of 85.96% for classifying 12 target construction tasks performed by two trades of workers, which was higher than two benchmark models. This experimental result indicated that integrating a concept of the human-object interaction offers great benefits in activity recognition when various trade workers coexist in a scene.

  • PDF

Spatial and Temporal Variability of Water Quality in Korean Dam Reservoirs

  • Lim, Go-Woon;Lee, Sang-Jae;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.4
    • /
    • pp.452-464
    • /
    • 2009
  • The objectives of this study were to evaluate spatial and temporal variability of water quality in 10 reservoirs and identify the key nutrients (N, P) influencing chlorophyll-a (CHL) along with analysis of empirical models and zonal patterns of total phosphorus (TP) and CHL. We analyzed total nitrogen (TN), TP, CHL, water clarity (Secchi depth, SD), and evaluated potential limiting nutrient using ambient N:P ratios and previous criteria of ambient nutrients. Water clarity and CHL varied largely depending on the seasonal monsoon and type of reservoir, but trophic state was diagnosed as eutrophy, base on mean CHL in most reservoirs. The peak of TP did not match the contents of CHL due to rapid flushing during the high run-off period. In the reservoir of DR, regression coefficient in the $P_r$ was 0.510 but was 0.159 in the $M_o$, while the TP-CHL relation in the YR increased during the monsoon compared to the premonsoon. The regression coefficient in the $P_r$ was not statistically significant but the value of $M_o$ was 0.250. TP showed similar longitudinal zonal gradients among the reservoirs of DR, YR and JR. Empirical models of TP-CHL, based on overall data, showed that CHL was determined by phosphorus($R^2=0.244$, p=0.0019). Regression analysis of CHL-SD showed a stronger linear fit ($R^2=0.638$, p<0.001) than the TP-CHL model.

An Algorithm for Identifying the Change of the Current Traffic Congestion Using Historical Traffic Congestion Patterns (과거 교통정체 패턴을 이용한 현재의 교통정체 변화 판별 알고리즘)

  • Lee, Kyungmin;Hong, Bonghee;Jeong, Doseong;Lee, Jiwan
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.1
    • /
    • pp.19-28
    • /
    • 2015
  • In this paper, we proposed an algorithm for the identification of relieving or worsening current traffic congestion using historic traffic congestion patterns. Historical congestion patterns were placed in an adjacency list. The patterns were constructed to represent spatial and temporal length for status of a congested road. Then, we found information about historical traffic congestions that were similar to today's traffic congestion and will use that information to show how to change traffic congestion in the future. The most similar pattern to current traffic status among the historical patterns corresponded to starting section of current traffic congestion. One of our experiment results had average error when we compared identified changes of the congestion for one of the sections in the congestion road by using our proposal and real traffic status. The average error was 15 minutes. Another result was for the long congestion road consisting of several sections. The average error for this result was within 10 minutes.

Temporal and Spatial Regulation of Cell Cycle Genes during Maize Sex Determination (옥수수 성 결정에 있어서 세포주기 유전자들의 시간적, 공간적 조절)

  • Lee, Jung-Ro;Kim, Jong-Cheol
    • Journal of Life Science
    • /
    • v.16 no.5
    • /
    • pp.828-833
    • /
    • 2006
  • Maize (Zea mays L.) pistil cell death and stamen cell arrest are pivotal process on the sex determination, which diverges from bisexual state of floral meristem to unisexual state in staminate or pistillate floret. We investigated the temporal and spatial distribution of cell cycle gene expression during maize sex determination. The positive regulatory genes of cell cycle, cyclin A, cyclin B, cyclin dependent kinase (CDK) and Mad2 were highly expressed in the developing pistil and stamen but the expression was disappeared in the dying pistil and arresting stamens. In contrast, the negative regulatory genes of cell cycle, Wee1 and CDK inhibitor (CKI) were expressed in the arresting stamens in the wild-type ear and tasselseed2 mutant tassel, however, these genes were not detected in dying pistil although the cyclin B gene expression was disappeared. These results suggest that both the pistil cell death and stamen cell arrest process in maize sex determination are involved in cell cycle regulation, but the different expression patterns of negative regulatory cell cycle genes in the arresting stamens and aborting pistils suggest that the two processes may have distinctive modes of action.

Trends on Temperature and Precipitation Extreme Events in Korea (한국의 극한 기온 및 강수 사상의 변화 경향에 관한 연구)

  • Choi, Young-Eun
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.711-721
    • /
    • 2004
  • The aim of this study is to clarify whether frequency and/or severity of extreme climate events have changed significantly in Korea during recent years. Using the best available daily data, spatial and temporal aspects of ten climate change indicators are investigated on an annual and seasonal basis for the periods of 1954-1999. A systematic increase in the $90^{th}$ percentile of daily minimum temperatures at most of the analyzed areas has been observed. This increase is accompanied by a similar reduction in the number of frost days and a significant lengthening of the thermal growing season. Although the intra-annual extreme temperature range is based on only two observations, it provides a very robust and significant measure of declining extreme temperature variability. The five precipitation-related indicators show no distinct changing patterns for spatial and temporal distribution except for the regional series of maximum consecutive dry days. Interestingly, the regional series of consecutive dry days have increased significantly while the daily rainfall intensity index and the fraction of annual total precipitation due to events exceeding the $95^{th}$ percentile for 1901-1990 normals have insignificantly increased.

Hemodynamic Characteristics Affecting Restenosis after Percutaneous Transluminal Coronary Angioplasty with Stenting in the Angulated Coronary Stenosis

  • Lee, Byoung-Kwon;Kwon, Hyuck-Moon;Roh, Hyung-Woon;Cho, Min-Tae;Suh, Sang-Ho
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.1 no.1
    • /
    • pp.13-23
    • /
    • 2003
  • Backgrounds: The present study in angulated coronary stenosis was to evaluate the influence of velocity and wall shear stress (WSS) on coronary atherosclerosis, the changes of hemodynamic indices following coronary stenting, as well as their effect of evolving in-stent restenosis using human in vivo hemodynamic parameters and computed simulation quantitatively and qualitatively. Methods: Initial and follow-up coronary angiographies in the patients with angulated coronary stenosis were performed (n=80). Optimal coronary stenting in angulated coronary stenosis had two models: < 50 % angle changed(model 1, n=43), > 50% angle changed group (model 2, n=37) according to percent change of vascular angle between pre- and post-intracoronary stenting. Flow-velocity wave obtained from in vivo intracoronary Doppler study data was used for in vitro numerical simulation. Spatial and temporal patterns of velocity vector and recirculation area were drawn throughout the selected segment of coronary models. WSS of pre/post-intracoronary stenting were calculated from three-dimensional computer simulation. Results: Follow-up coronary angiogram demonstrated significant difference in the percent of diameter stenosis between two groups (group 1: $40.3{\pm}30.2$ vs. group 2: $25.5{\pm}22.5%$, p<0.05). Negative WSS area on 3D simulation, which is consistent with re-circulation area of velocity vector, was noted on the inner wall of post-stenotic area before stenting. The negative WSS was disappeared after stenting. High spatial and temporal WSS before stenting fell into within physiologic WSS after stenting. This finding was prominent in Model 2 (p<0.01) Conclusions: The present study suggests that hemodynamic forces exerted by pulsatile coronary circulation termed as WSS might affect on the evolution of atherosclerosis within the angulated vascular curvature. Moreover, geometric change, such as angular difference between pre / post-intracoronary stenting might give proper information of optimal hemodynamic charateristics for vascular repair after stenting.

  • PDF

Exploiting Patterns for Handling Incomplete Coevolving EEG Time Series

  • Thi, Ngoc Anh Nguyen;Yang, Hyung-Jeong;Kim, Sun-Hee
    • International Journal of Contents
    • /
    • v.9 no.4
    • /
    • pp.1-10
    • /
    • 2013
  • The electroencephalogram (EEG) time series is a measure of electrical activity received from multiple electrodes placed on the scalp of a human brain. It provides a direct measurement for characterizing the dynamic aspects of brain activities. These EEG signals are formed from a series of spatial and temporal data with multiple dimensions. Missing data could occur due to fault electrodes. These missing data can cause distortion, repudiation, and further, reduce the effectiveness of analyzing algorithms. Current methodologies for EEG analysis require a complete set of EEG data matrix as input. Therefore, an accurate and reliable imputation approach for missing values is necessary to avoid incomplete data sets for analyses and further improve the usage of performance techniques. This research proposes a new method to automatically recover random consecutive missing data from real world EEG data based on Linear Dynamical System. The proposed method aims to capture the optimal patterns based on two main characteristics in the coevolving EEG time series: namely, (i) dynamics via discovering temporal evolving behaviors, and (ii) correlations by identifying the relationships between multiple brain signals. From these exploits, the proposed method successfully identifies a few hidden variables and discovers their dynamics to impute missing values. The proposed method offers a robust and scalable approach with linear computation time over the size of sequences. A comparative study has been performed to assess the effectiveness of the proposed method against interpolation and missing values via Singular Value Decomposition (MSVD). The experimental simulations demonstrate that the proposed method provides better reconstruction performance up to 49% and 67% improvements over MSVD and interpolation approaches, respectively.

Analysis of Land Use Pattern Change of Sub-Watershed -Focused on Moyar, India- (유역하류지역의 토지이용변화 분석 -인도 Moyar유역을 중심으로-)

  • Malini, Ponnusamy;Yeu, Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.87-92
    • /
    • 2010
  • Large pressure on the growing population has increased rapid change in the LULC (land use/land cover) patterns in the watershed area. Spatial distribution of LULC information and its changes are desirable for any effective planning, managing and monitoring activities. The aim of the study is to produce the 1,50,000 scaled LULC change map for the sub-watershed, Western Moyar, India using the multi-temporal satellite image dataset of IRS LISS III images for the year 1989, 1999, and 2002. About 9 classes are extracted using onscreen visual interpretation techniques for all the three years. The change detection analysis was performed using matrix method for period I (1989-1999) and period II (1999-2002). The study reveals that the changes noticed in period II (1999-2002) is comparatively more than period I (1989-1999), which is dynamic information to protect the sub-watershed area from the deterioration and paves the way to for the sustainable development.