• Title/Summary/Keyword: temporal and spatial patterns

Search Result 334, Processing Time 0.03 seconds

Anomaly Detection in Medical Wireless Sensor Networks

  • Salem, Osman;Liu, Yaning;Mehaoua, Ahmed
    • Journal of Computing Science and Engineering
    • /
    • v.7 no.4
    • /
    • pp.272-284
    • /
    • 2013
  • In this paper, we propose a new framework for anomaly detection in medical wireless sensor networks, which are used for remote monitoring of patient vital signs. The proposed framework performs sequential data analysis on a mini gateway used as a base station to detect abnormal changes and to cope with unreliable measurements in collected data without prior knowledge of anomalous events or normal data patterns. The proposed approach is based on the Mahalanobis distance for spatial analysis, and a kernel density estimator for the identification of abnormal temporal patterns. Our main objective is to distinguish between faulty measurements and clinical emergencies in order to reduce false alarms triggered by faulty measurements or ill-behaved sensors. Our experimental results on both real and synthetic medical datasets show that the proposed approach can achieve good detection accuracy with a low false alarm rate (less than 5.5%).

HA-PVFS : A PVFS File System supporting High Data Availability Adaptive to Temporal Locality (HA-PVFS : 시간적 지역성에 적응적인 데이터 고가용성을 지원하는 PVFS 파일 시스템)

  • Sim Sang-Man;Han Sae-Young;Park Sung-Yong
    • The KIPS Transactions:PartA
    • /
    • v.13A no.3 s.100
    • /
    • pp.241-252
    • /
    • 2006
  • In cluster file systems, the availability of files has been supported by replicating entire files or generating parities on parity servers. However, those methods require very large temporal and spatial cost, and cannot handle massive failures situation on the file system. So we propose HA-PVFS, a cluster file system supporting high data availability adaptive to temporal locality. HA-PVFS restricts replication or parity generation to some important files, for that it employs an efficient algorithm to estimate file access patterns from limited information. Moreover, in order to minimize the performance degradation of the file system, it uses delayed update method and relay replication.

Spatial and Temporal Characteristics of Summer Extreme Precipitation Events in the Republic of Korea, 2002~2011 (우리나라 여름철 극한강수현상의 시·공간적 특성(2002~2011년))

  • Lee, Seung-Wook;Choi, Gwangyong;Kim, Baek-Jo
    • Journal of the Korean association of regional geographers
    • /
    • v.20 no.4
    • /
    • pp.393-408
    • /
    • 2014
  • In this study, the spatio-temporal characteristics of summer extreme precipitation events in the Republic of Korea are examined based on the daily precipitation data observed at approximately 360 sites of both Automatic Weather Station (AWS) and Automated Synoptic Observation System (ASOS) networks by the Korea Meteorological Administration for the recent decade(2002~2011). During the summer Changma period(late June~mid July), both the frequency of extreme precipitation events exceeding 80mm of daily precipitation and their decadal maximum values are greatest at most of weather stations. In contrast, during the Changma pause period (late July~early August), these patterns are observed only in the northern regions of Geyeonggi province and western Kangwon province as such patterns are detected around Mt. Sobaek and Mt. Halla as well as in the southern regions of Geyeonggi province and western Kangwon province during the late Changma period (mid August~early September) due to north-south oscillation of the Changma front. Investigation of their regional patterns confirms that not only migration of the Changma front but also topological components in response to the advection of moistures such as elevation and aspect of major mountain ridges are detrimental to spatio-temporal patterns of extreme precipitation events. These results indicate that each local administration needs differentiated strategies to mitigate the potential damages by extreme precipitation events due to the spatiotemporal heterogeneity of their frequency and intensity during each Changma period.

  • PDF

Geovisualization Environment for Spatio-temporal Trajectory of Personal Activity (시공간 개인통행자료의 지리적 시각화)

  • Ahn Jae-Seong;Lee Yang-Won;Park Key-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.3 s.108
    • /
    • pp.310-320
    • /
    • 2005
  • This study attempts at prototyping and evaluating a geovisualization tool that summarizes and explores human activity patterns using spatio-temporal trajectory data collected from GPS receiver. A set of core conceptualization developed in 'time geography' is successfully represented by our prototype based on the notion of 'space-time cube.' The notions of 'temporal dispersion cylinder' and 'parallel plane plot' are also implemented to allow funker analyses of human activity pattern on the space-time trajectory. The capabilities of the geovisualization environment we proposed include the interactive and dynamic functions that support a variety of explorations on the three components of spatio-temporal data : space(where), time(when), and object(what).

Packet Loss Patterns Adaptive Feedback Scheduling for Reliable Multicast

  • Baek, Jin-Suk;Kim, Cheon-Shik;Hong, You-Sik
    • Journal of Ubiquitous Convergence Technology
    • /
    • v.1 no.1
    • /
    • pp.28-34
    • /
    • 2007
  • Tree-based reliable multicast protocols provide scalability by distributing error-recovery tasks among several repair nodes. These repair nodes perform local error recovery for their receiver nodes using the data stored in their buffers. We propose a packet loss patterns adaptive feedback scheduling scheme to manage these buffers in an efficient manner. Under our scheme, receiver nodes send NAKs to repair nodes to request packet retransmissions only when the packet losses are independent events from other nodes. At dynamic and infrequent intervals, they also send ACKs to indicate which packets can be safely discarded from the repair node's buffer. Our scheme reduces delay in error recovery because the requested packets are almost always available in the repair node's buffers. It also reduces the repair node's workload because (a) each receiver node sends infrequent ACKs with non-fixed intervals and (b) their sending times are fairly distributed among all the receiver nodes.

  • PDF

Machine Learning Application to the Korean Freshwater Ecosystems

  • Jeong, Kwang-Seuk;Kim, Dong-Kyun;Chon, Tae-Soo;Joo, Gea-Jae
    • The Korean Journal of Ecology
    • /
    • v.28 no.6
    • /
    • pp.405-415
    • /
    • 2005
  • This paper considers the advantage of Machine Learning (ML) implemented to freshwater ecosystem research. Currently, many studies have been carried out to find the patterns of environmental impact on dynamics of communities in aquatic ecosystems. Ecological models popularly adapted by many researchers have been a means of information processing in dealing with dynamics in various ecosystems. The up-to-date trend in ecological modelling partially turns to the application of ML to explain specific ecological events in complex ecosystems and to overcome the necessity of complicated data manipulation. This paper briefly introduces ML techniques applied to freshwater ecosystems in Korea. The manuscript provides promising information for the ecologists who utilize ML for elucidating complex ecological patterns and undertaking modelling of spatial and temporal dynamics of communities.

Spatio-Temporal Clustering Analysis of HPAI Outbreaks in South Korea, 2014 (2014년 국내 발생 HPAI(고병원성 조류인플루엔자)의 시·공간 군집 분석)

  • MOON, Oun-Kyong;CHO, Seong-Beom;BAE, Sun-Hak
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.3
    • /
    • pp.89-101
    • /
    • 2015
  • Outbreaks of highly pathogenic avian influenza(HPAI) subtype H5N8 have occurred in Korea, January 2014 and it continued more than a year until 2015. And more than 5 million heads of poultry hads been damaged in 196 farms until May 2014. So, we studied the spatial, temporal and spatio-temporal patterns of the HPAI epidemics for understanding the propagation and diffusion characteristics of the 2014 HPAI. The results are expressed using GIS. Throughout the study period three epidemic waves occurred over the time. And outbreaks made three clusters in space. First spatial cluster is adjacent areas of province of Chungcheongbuk-do, Chungcheongnam-do and Gyeonggi -do. Second is Jeonlabuk-do Gomso Bay area. And the last is Naju and Yeongam in Jeollanam-do. Also, most of spatio-temporal clusters were formed in spatially high clustered areas. Especially, in Gomso Bay area space density and spatio-temporal density were concurrent. It means that the effective prevention activity for HPAI was carried out. But there are some exceptional areas such as Chungcheongbuk-do, Chungcheongnam-do, Gyeonggi-do adjacent area. In these areas the outbreak density was high in space but the spatio-temporal cluster was not formed. It means that the HPAI virus was continuing inflow over a long period.

The Spatio-temporal Analysis of Gait Characteristics during Ramp Ascent and Descent at Different Inclinations (정상인의 경사로 보행 시 경사각에 따른 시공간적 보행 특성 분석)

  • Han, Jin-Tae;Cho, Jeoung-Sun;Bae, Sung-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.18 no.1
    • /
    • pp.95-106
    • /
    • 2006
  • Purpose: The aim of this study was to investigate the kinematics of young adults during ramp climbing at different inclinations. Methods: Twenty-three subjects ascended and descended four steps at four different inclinations(level, $8^{\circ},\;16^{\circ},\;24^{\circ}$). Temporal-spatial parameters were measured by GaitRite system(standard mat). Groups difference was analysed with on-way ANOVA and Student-Newman-Keuls test. Results: The different kinematics of ramp ascent and descent were analysed and compared to level walking patterns. In ascending ramps, step length and stride length decreased with $24^{\circ}$ inclination (p<.000). Stance duration increased with $24^{\circ}$, but swing duration decreased with $24^{\circ}$ inclination (p<.000). Step time and velocity decreased with $16^{\circ}C,\;24^{\circ}$ inclination (p<.000). Cadence decreased with all inclination($8^{\circ},\;16^{\circ},\;24^{\circ}$)(p<.000). In descending ramps, step length and stride length, velocity decreased with all inclination($8^{\circ},\;16^{\circ},\;-24^{\circ}$)(p<.000). Stance duration increased with all inclination($8^{\circ},\;-16^{\circ},\;-24^{\circ}$) and swing duration decreased with all inclination($-8^{\circ},\;-16^{\circ},\;-24^{\circ}$)(p<.000). But Step time was not differentiated with different inclinations. Cadence decreased with only. $8^{\circ}$ inclination(p<.05). Conclusion: These results suggest that there is a certain inclination angle or angular range where subjects do switch between level walking and ramp walking gait pattern. This shows their motor control strategy between level and ramp walking. Further studies are necessary to confirm and detect the ascent and descent ramp gait patterns.

  • PDF

Spatial Analyses and Modeling of Landsacpe Dynamics (지표면 변화 탐색 및 예측 시스템을 위한 공간 모형)

  • 정명희;윤의중
    • Spatial Information Research
    • /
    • v.11 no.3
    • /
    • pp.227-240
    • /
    • 2003
  • The primary focus of this study is to provide a general methodology which can be utilized to understand and analyze environmental issues such as long term ecosystem dynamics and land use/cover change by development of 2D dynamic landscape models and model-based simulation. Change processes in land cover and ecosystem function can be understood in terms of the spatial and temporal distribution of land cover resources. In development of a system to understand major processes of change and obtain predictive information, first of all, spatial heterogeneity is to be taken into account because landscape spatial pattern affects on land cover change and interaction between different land cover types. Therefore, the relationship between pattern and processes is to be included in the research. Landscape modeling requires different approach depending on the definition, assumption, and rules employed for mechanism behind the processes such as spatial event process, land degradation, deforestration, desertification, and change in an urban environment. The rule-based models are described in the paper for land cover change by natural fires. Finally, a case study is presented as an example using spatial modeling and simulation to study and synthesize patterns and processes at different scales ranging from fine-scale to global scale.

  • PDF

The Applicability for Earth Surface Monitoring Based on 3D Wavelet Transform Using the Multi-temporal Satellite Imagery (다중시기 위성영상을 이용한 3차원 웨이블릿 변환의 지구모니터링 응용가능성 연구)

  • Yoo, Hee-Young;Lee, Ki-Won
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.560-574
    • /
    • 2011
  • Satellite images that have been obtained periodically and continuously are very effective data to monitor the changes of Earth's surface. Traditionally, the studies on change detection using satellite images have mainly focused on comparison between two results after analyzing two images respectively. However, the interests in researches to catch smooth trends and short duration events from continual multi-temporal images have been increased recently. In this study, we introduce and test an approach based on 3D wavelet transform to analyze the multi-temporal satellite images. 3D wavelet transform can reduce the dimensions of data conserving main trends. Also, it is possible to extract important patterns and to analyze spatial and temporal relations with neighboring pixels using 3D wavelet transform. As a result, 3D wavelet transform is useful to capture the long term trends and short-term events rapidly. In addition, we can expect to get new information through sub-bands of 3D wavelet transform which provide different information by decomposed direction.