• Title/Summary/Keyword: tempered hardness

Search Result 97, Processing Time 0.027 seconds

Fatigue Damage Behavior in TIG Welded Joint of F82H Steel under Low Cycle Fatigue Loading (저주기 피로부하에서 F82H 강 TIG 용접 접합부의 피로손상거동)

  • Kim, Dong-Hyun;Park, Ki-Won
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.42-48
    • /
    • 2015
  • Reduced activation ferritic/martensitic steels are recognized as the primary candidate structural materials for fusion blanket systems. Welding is an inevitable for breeding blanket for pressure tightness and radioisotope confinement. Especially, TIG welding was chosen for sealing because it has the largest gap allowance compared to the other welding methods, and its properties are controllable by feed wire and welding conditions. In this study, the low cycle fatigue test using two-type gage such as extensometer and strain gage was applied to the TIG welded joint of F82H steel, for evaluating fatigue damage accumulation behavior of the HAZs. As the result, the over-tempered HAZ have shown a higher fatigue damage accumulation compared with other materials at all the testing conditions.

Effect of Carbon-Restoration on Mechanical Properties of Automobile Safety Parts (자동차용 안전부품의 기계적 성질에 미치는 복탄처리의 영향)

  • Kim, M.G.;Jung, B.H.;Jung, S.H.;Lee, B.C.;Kim, S.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.1
    • /
    • pp.26-31
    • /
    • 2003
  • Decarburized zone of metal tongue which is used in seat belt for automobiles was carbon-restoration quenched and tempered using nitrogen-methanol gaseous atmosphere. The effects of microstructure and mechanical properties of metal tongue on the effectiveness of carbon-restoration during tempering was studied. Metal tongue showed $20{\sim}30{\mu}m$ decarburized zone. However, after carbon-restoration, it has uniform microstructure and thus hardness without decarburized zone. Carbon-restoration quenching and tempering process resulted in better wear and corrosion resistances than quenching and tempering process.

12%-Cr 강의 C0$_{2}$레이저 표면 경화

  • 김재도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.84-88
    • /
    • 1992
  • Laser beam hardenling of 12%-Cr steel has been evaluated by using a continuous wave 3 kW CO$\_$2/ laser with a hardening mirror set. Experiment was performed on the optimum hardening condition with a laser power of 2.85kW and travel speed of 10 and 5 m/min. Multi passes have been alsotried to find the hardening characteristics of partly overlapped zone. The black paint to use at high temperature was adopted to increases the absorptivity of laser beam energy with the wavelength of 10.6 .mu. m at the surface of bese metal. The microstructure of the hardened layers was observed by using a light microscopy. SEM and TEM. A fine lamellar martensite formed in the hardened zones exhibits very high Vickers microhardness of 600 Hv, whereas the tempered martesite distributes in the base metal with Vickers microhardness of 240 Hv. It has been found that laser hardening with multi pass showed no significant drop of the hardness between adjacent passes.

Thermal shock characteristics of work roll for cold rolling mills (냉간 압연용 Wo가 Roll의 열충격 특성)

  • 박영철;김일봉;전제영;조규섭
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.252-261
    • /
    • 1999
  • The troubles such as slipping, pinching and other behaviors in the service of cold rolling mills often induce thermal shock crack on the surface of work roll, and considerably reduce their service lives. In order to evaluate thermal shock resistibility we use thermal shock tester generating frictional heat caused by a rotating disc contacting with test specimens. Thermal shock produces two heat affected layers below the roll surface, one is rehardened layer and the other is succeeding tempered layer. The maximum depth of crack occurred in a thermal shocked area is a criterion for the thermal shock resistibility. This paper describes on the investigation to the influence of hardness and residual stress.

  • PDF

Evaluation on Material Properties of 3Cr-lMo-0.25V Steel by Electromagnetic Methods (전자기법을 이용한 3Cr-lMo-0.25V 강의 물성 평가)

  • Nam, Young-Hyun;Ahn, Bong-Young;Lee, Seung-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.2
    • /
    • pp.255-261
    • /
    • 2003
  • It is advantageous to use NDE methods to assess the mechanical properties of materials since the conventional method is time-consuming and sometimes requires cutting of sample from the component. The NDE parameters such as ultrasonic velocity and attenuation, electric resistivity, and magnetic coercive force and remanance have been utilized to evaluate changes of material properties due to heat treatment condition. It has been found that changes of materials properties under quenched and tempered/PWHT treatments could not be detected using EMAT and Electrical resistivity methods. However, victors hardness and magnetic hysteresis loop decreased with heat treatment procedures. These results were obtained using 3Cr-lMo-0.25V steel. The magnetic parameters were found to be most sensitive to changes of material properties.

Microstructural Characterization of Clad Interface in Welds of Ni-Cr-Mo High Strength Low Alloy Steel (Ni-Cr-Mo계 고강도 저합금강 용접클래드 계면의 미세조직 특성 평가)

  • Kim, Hong-Eun;Lee, Ki-Hyoung;Kim, Min-Chul;Lee, Ho-Jin;Kim, Keong-Ho;Lee, Chang-Hee
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.628-634
    • /
    • 2011
  • SA508 Gr.4N Ni-Cr-Mo low alloy steel, in which Ni and Cr contents are higher than in commercial SA508 Gr.3 Mn-Mo-Ni low alloy steels, may be a candidate reactor pressure vessel (RPV) material with higher strength and toughness from its tempered martensitic microstructure. The inner surface of the RPV is weld-cladded with stainless steels to prevent corrosion. The goal of this study is to evaluate the microstructural properties of the clad interface between Ni-Cr-Mo low alloy steel and stainless weldment, and the effects of post weld heat treatment (PWHT) on the properties. The properties of the clad interface were compared with those of commercial Mn-Mo-Ni low alloy steel. Multi-layer welding of model alloys with ER308L and ER309L stainless steel by the SAW method was performed, and then PWHT was conducted at $610^{\circ}C$ for 30 h. The microstructural changes of the clad interface were analyzed using OM, SEM and TEM, and micro-Vickers hardness tests were performed. Before PWHT, the heat affected zone (HAZ) showed higher hardness than base and weld metals due to formation of martensite after welding in both steels. In addition, the hardness of the HAZ in Ni-Cr-Mo low alloy steel was higher than that in Mn-Mo-Ni low alloy steel due to a comparatively high martensite fraction. The hardness of the HAZ decreased after PWHT in both steels, but the dark region was formed near the fusion line in which the hardness was locally high. In the case of Mn-Mo-Ni low alloy steel, formation of fine Cr-carbides in the weld region near the fusion line by diffusion of C from the base metal resulted in locally high hardness in the dark region. However, the precipitates of the region in the Ni-Cr-Mo low alloy steel were similar to that in the base metal, and the hardness in the region was not greatly different from that in the base metal.

Microstructures and Mechanical Characteristics of Advanced Cold-Work Tool Steels: Ledeburitic vs. Matrix-type Alloy (고성능 냉간금형강의 미세조직과 기계적 특성: 레데부라이트(ledeburitic) 및 매트릭스(matrix)형 강종의 비교)

  • Kang, Jun-Yun;Kim, Hoyoung;Son, Dongmin;Lee, Jae-Jin;Yun, Hyo Yun;Lee, Tae-Ho;Park, Soon Keun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.4
    • /
    • pp.181-189
    • /
    • 2015
  • Two types of advanced cold-work tool steels were characterized and compared. A higher-alloyed ledeburitic steel with primary carbides (denoted as 9Cr) and a lower-alloyed steel without primary carbides (5Cr) were fabricated by vacuum induction melting and subsequent hot forging. They were spheroidizing-annealed at $870^{\circ}C$, quenched at $1030^{\circ}C$ and tempered at 180 or $520^{\circ}C$. Their machinability after annealing and hardness, impact toughness, wear resistance after tempering were compared and interpreted in association with their characteristic microstructures. After annealing, 5Cr showed higher resistance to machining due to higher ductility and toughness in spite of lower strength and smaller carbide volume. Owing to smaller carbide volume fraction and the absence of coarse primary carbides, 5Cr showed even better impact toughness although the hardness was lower. The improved toughness of 5Cr resulted in excellent wear resistance, while smaller volume fraction of retained austenite also contributed to it.

Microstructural Changes of STS304 Steel during the Carbide Dispersion (CD) Carburization and Subzero Treatment (CD 침탄 및 Subzero 처리가 STS 304 스테인리스강의 미세조직에 미치는 영향)

  • Kong, Jung Hyun;Lee, Hea Joeng;Sung, Jang Hyun;Kim, Sang Gweon;Kim, Sung Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.2
    • /
    • pp.65-71
    • /
    • 2007
  • Microstructural changes and hardness variations in STS 304 steel have been investigated during the processes of carbide dispersion (CD) carburization; carburization, austenitization, subzero treatment and tempering. The carbon content of the surface layer increased up to maximum 4.0% after carburization, and the content was homogenized with the value of 2.3% to the $95{\mu}m$ from the surface after austenitization. The carbide appeared during CD carburization process was $Cr_7C_3$ type, which was composed network carbides along the austenite grain boundaries, square type carbides in the interior of the grain and fine nano-sized carbides. The fine nano-sized carbides precipitated at the austenitization stage and possibly subzero treatment stage were coarsened after tempering at $200^{\circ}C$, resulting the hardness decrease. The tempered steel without subzero treatment increased hardness with increasing time due to the continuous precipitation of fine carbides during tempering. The nano-sized carbide appeared square type morphology.

Quantitative Analysis of Metallographic Characteristics with Austenitizing Temperature in STD 11 Steel (STD 11 강의 오스테나이트화 온도에 따른 제 특성의 정량 분석)

  • Kim, J.E.;Ju, Y.H.;Jang, W.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.5
    • /
    • pp.215-221
    • /
    • 2017
  • The effect of austenitizing temperature on the degree of carbides re-solutionizing, mean graine size, hardness and the volume fraction of retaind austenite ($V_{\gamma}$) etc., has been studied by means of metallography, X-ray diffractometry and hardness measurement in STD 11 tool steel. As austenitizing temperature increases, the amount of alloying elements which is re-dissolved into matrix increases, resulting in increase of $V_{\gamma}$, due to the chemical stabilization of austenite. The Vickers hardness value decreases with increasing austenitizing temperature, which is attributed to grain size as well the volume fractions of $V_{\gamma}$ and carbides. Theoretical diffraction intensity of (200) ${\alpha}^{\prime}$, (211) ${\alpha}^{\prime}$ (200) ${\gamma}$ and (220) ${\gamma}$ peaks obtained by $CuK_{\alpha}$ chracteristics X-ray (${\lambda}=0.15429nm$) was calculated, and quantitative analysis of $V_{\gamma}$ could be carried out by X-ray diffraction method. The resultant value is well coincided with the value obtained by image analysis method. When the quenched specimen is tempered above $200{\sim}400^{\circ}C$ for 30 min, the transition carbides i.e., MC and $M_2C$ in the size of about 20 nm begin to precipitate at $300^{\circ}C$.

Variation of Microstructure and Property of the Electro-slag Remelted M2 Steel with Heat Treatment Conditions (ESR한 M2강의 열처리에 따른 미세조직 및 물성 변화)

  • Lee, Ki-Jong;Kim, Moon-Hyun;Lee, Jeong-Keun;Joo, Dae-Heon;Kim, Myung-Ho
    • Journal of Korea Foundry Society
    • /
    • v.22 no.6
    • /
    • pp.281-287
    • /
    • 2002
  • In order to investigate the variation of microstructure and property of the Electro-slag Remelted M2 steel, microstructure observation, hardness, and bending test were performed by using optical microscope. SEM/EDS, rockwell hardness tester, charpy impact tester and bending tester, respectively. It was revealed that the number of inclusions and content of gas elements(S, O, N) in M2 steel fabricated by ESR process decreased markedly compared to those of AIM. It seems to be due to refining effect of ESR process. The volume fraction of carbides in quenched and tempered specimens after austenitizing at 1150$^{\circ}C$ and 1240$^{\circ}C$ was measured. The volume fraction of grain boundary carbides were found to be similar for both specimens. However, The volume fraction of carbides in grain decreased with an increase of austenitizing temperature. When specimen was austenitized at 1150$^{\circ}C$, grain boundary carbides showed needle like morphology. But, the carbides were broken with an increase of austenitizing temperature. The specimen austenitized at 1240$^{\circ}C$ showed higher hardness and lower bending strength compared to that of 1150$^{\circ}C$. As expected, toughness increased with sub-zero quenching treatment.