• Title/Summary/Keyword: tempered distributions

Search Result 13, Processing Time 0.022 seconds

The Cauchy Representation of Integrable and Tempered Boehmians

  • Loonker, Deshna;Banerji, Pradeep Kumar
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.4
    • /
    • pp.481-493
    • /
    • 2007
  • This paper deals with, by employing the relation between Cauchy representation and the Fourier transform and properties of the former in $L_1$-space, the investigation of the Cauchy representation of integrable Boehmians as a natural extension of tempered distributions, we have investigated Cauchy representation of tempered Boehmians. An inversion formula is also proved.

  • PDF

LAGUERRE EXPANSIONS AND PRODUCTS OF DISTRIBUTIONS

  • Catuogno, Pedro;Martinez, Federico;Molina, Sandra
    • Communications of the Korean Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.201-209
    • /
    • 2008
  • In this paper we introduce two products of tempered distributions with positive support. These products are based in the Laguerre representation of distributions. We calculate some products as, $[{\delta}]x^{\lambda}_+={\delta}[x^{\lambda}_+]=0\;and\;[x^{\lambda}_+]x^{\mu}_+=x^{{\lambda}+{\mu}}_+$ for appropriate ${\lambda}$ and ${\mu}$.

HYERS-ULAM-RASSIAS STABILITY OF QUADRATIC FUNCTIONAL EQUATION IN THE SPACE OF SCHWARTZ TEMPERED DISTRIBUTIONS

  • CHUNG JAEYOUNG
    • The Pure and Applied Mathematics
    • /
    • v.12 no.2 s.28
    • /
    • pp.133-142
    • /
    • 2005
  • Generalizing the Cauchy-Rassias inequality in [Th. M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.] we consider a stability problem of quadratic functional equation in the spaces of generalized functions such as the Schwartz tempered distributions and Sato hyperfunctions.

  • PDF

LOCALIZATION AND MULTIPLICATION OF DISTRIBUTIONS

  • Richards, Ian;Youn, Hee-Kyung K.
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.3
    • /
    • pp.371-389
    • /
    • 2000
  • Working within classical distribution theory, we develop notions of multiplication and convolution for tempered distributions which are general enough to encompass the classical cases -such as pointwise multiplication of continuous functions or the convolution of $L^1$ functions- which most textbook treatments of distribution theory leave out. Pains are taken to develop a theory which satisfies the commutative and asociative laws.

  • PDF

CERTAIN CLASSES OF ANALYTIC FUNCTIONS AND DISTRIBUTIONS WITH GENERAL EXPONENTIAL GROWTH

  • Sohn, Byung Keun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.6
    • /
    • pp.1805-1827
    • /
    • 2014
  • Let $\mathcal{K}^{\prime}_M$ be the generalized tempered distributions of $e^{M(t)}$-growth, where the function M(t) grows faster than any linear functions as ${\mid}t{\mid}{\rightarrow}{\infty}$, and let $K^{\prime}_M$ be the Fourier transform spaces of $\mathcal{K}^{\prime}_M$. We obtain the relationship between certain classes of analytic functions in tubes, $\mathcal{K}^{\prime}_M$ and $K^{\prime}_M$.

Translation invariant and positive definite bilinear fourier hyperfunctions

  • Jaeyoung Chung;Chung, Soon-Yeong;Kim, Dohan
    • Bulletin of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.545-551
    • /
    • 1996
  • It is well known in the theory of distributions and proved in [GS, S] that $$ (i) (Bochner-Schwartz) Every positive definite (tempered) distribution is the Fourier transform of a positive tempered measure \mu. $$ $$ (ii) (Schwartz kernel theorem) Let B(\varphi, \psi) be a bilinear distribution. Then for some u \in D'(R^n \times R^n) B(\varphi, \psi) = u(\varphi(x)\bar{\psi}(y)) for every \varphi, \psi \in C_c^\infty. $$ $$ (iii) A translation invariant positive definite bilinear distribution B(\varphi, \psi) is of the form B(\varphi, \psi) = \smallint \varphi(x)\psi(x) d\mu(x) for every \varphi, \psi \in C_c^\infty (R^n), where \mu is a positive tempered measure.

  • PDF

ON THE STABILITY OF THE PEXIDER EQUATION IN SCHWARTZ DISTRIBUTIONS VIA HEAT KERNEL

  • Chung, Jae-Young;Chang, Jeong-Wook
    • Honam Mathematical Journal
    • /
    • v.33 no.4
    • /
    • pp.467-485
    • /
    • 2011
  • We consider the Hyers-Ulam-Rassias stability problem $${\parallel}u{\circ}A-{\upsilon}{\circ}P_1-w{\circ}P_2{\parallel}{\leq}{\varepsilon}({\mid}x{\mid}^p+{\mid}y{\mid}^p)$$ for the Schwartz distributions u, ${\upsilon}$, w, which is a distributional version of the Pexider generalization of the Hyers-Ulam-Rassias stability problem ${\mid}(x+y)-g(x)-h(y){\mid}{\leq}{\varepsilon}({\mid}x{\mid}^p+{\mid}y{\mid}^p)$, x, $y{\in}\mathbb{R}^n$, for the functions f, g, h : $\mathbb{R}^n{\rightarrow}\mathbb{C}$.

ON THE HYERS-ULAM-RASSIAS STABILITY OF THE JENSEN EQUATION IN DISTRIBUTIONS

  • Lee, Eun-Gu;Chung, Jae-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.261-271
    • /
    • 2011
  • We consider the Hyers-Ulam-Rassias stability problem ${\parallel}2u{\circ}\frac{A}{2}-u{\circ}P_1-u{\circ}P_2{\parallel}{\leq}{\varepsilon}({\mid}x{\mid}^p+{\mid}y{\mid}^p)$, $x,y{\in}{\mathbb{R}}^n$ for the Schwartz distributions u, which is a distributional version of the Hyers-Ulam-Rassias stability problem of the Jensen functional equation ${\mid}2f(\frac{x+y}{2})-f(x)-F(y){\mid}{\leq}{\varepsilon}({\mid}x{\mid}^p+{\mid}y{\mid}^p)$, $x,y{\in}{\mathbb{R}}^n$ for the function f : ${\mathbb{R}}^n{\rightarrow}{\mathbb{C}}$.

UNIQUENESS FOR THE NONHARMONIC FOURIER SERIES OF DISTRIBUTIONS

  • Cho, Mun-Ja;Chung, Soon-Yeong
    • Communications of the Korean Mathematical Society
    • /
    • v.13 no.3
    • /
    • pp.515-523
    • /
    • 1998
  • We generalize the uniqueness theorem of K.Yoneda[9] for nonharmonic series under a much weaker condition as follows: Let {λ$_{k}$$_{k}$ =$o^{\infty}$ be a discrete sequence in $R^n$. If (equation omitted) = 0 for all x $\in$ $R^n$ and there exists a number N > 0 such that (equation omitted) then$ a_{k}$ = 0 for all k $\in$ $N_{0}$.

  • PDF