• Title/Summary/Keyword: temperature-responsive

Search Result 106, Processing Time 0.032 seconds

Preparation and Swelling Behavior of Stimuli-responsive PHEMA Hybrid Gels (자극감응성 PHEMA 하이브리드 젤의 제조와 팽윤거동)

  • Ahn, Jung-Hyun;Jeon, Young-Sil;Chung, Dong-June;Kim, Ji-Heung
    • Polymer(Korea)
    • /
    • v.35 no.1
    • /
    • pp.94-98
    • /
    • 2011
  • Poly(2-hydroxyethyl methacrylate), PHEMA, hybrid gels containing Pluronic and acrylic acid (AAc) were prepared as new biocompatible and stimuli-responsive hydrogels by photo-polymerization technique. The prepared hybrid gel showed reversible, temperature-responsive swelling behavior due to the presence of Pluronic component, which underwent sol-gel transition at an elevated temperature to cause gel shrinkage. The hydrogel also exhibited increased swelling degrees and pH-sensitivity due to the AAc component with ionizable carboxylic acid groups. The microporous gel morphology and its changes upon stimuli was observed by scanning electron microscopy.

Poly(Dimethylaminoethyl Methacrylate)-Based pH-Responsive Hydrogels Regulate Doxorubicin Release at Acidic Condition

  • Lee, Seung-Hun;You, Jin-Oh
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.202-214
    • /
    • 2015
  • Stimuli-responsive biomaterials that alter their function through sensing local molecular cues may enable technological advances in the fields of drug delivery, gene delivery, actuators, biosensors, and tissue engineering. In this research, pH-responsive hydrogel which is comprised of dimethylaminoethyl methacylate (DMAEMA) and 2-hydroxyethyl methacrylate (HEMA) was synthesized for the effective delivery of doxorubicin (Dox) to breast cancer cells. Cancer and tumor tissues show a lower extracellular pH than normal tissues. DMAEMA/HEMA hydrogels showed significant sensitivity by small pH changes and each formulation of hydrogels was examined by scanning electron microscopy, mechanical test, equilibrium mass swelling, controlled Dox release, and cytotoxicity. High swelling ratios and Dox release were obtained at low pH buffer condition, low cross-linker concentration, and high content of DMAEMA. Dox release was accelerated to 67.3% at pH 5.5 for 6-h incubation at $37^{\circ}C$, while it was limited to 13.8% at pH7.4 at the same time and temperature. Cell toxicity results to breast cancer cells indicate that pH-responsive DMAEMA/HEMA hydrogels may be used as an efficient matrix for anti-cancer drug delivery with various transporting manners. Also, pH-responsive DMAEMA/HEMA hydrogels may be useful in therapeutic treatment which is required a triggered release at low pH range such as gene delivery, ischemia, and diabetic ketoacidosis.

Preparation and Properties of Modified PHEMA Hydrogels Containing Thermo-responsive Pluronic Component

  • Hong, Kwang-Hyun;Jeon, Young-Sil;Kim, Ji-Heung
    • Macromolecular Research
    • /
    • v.17 no.1
    • /
    • pp.26-30
    • /
    • 2009
  • To modify and strengthen the properties of PHEMA hydrogel, composite hydrogels containing varying amounts of a Pluronic (PEO-PPO-PEO) component were synthesized by bulk polymerization of HEMA in the presence of Pluronic dimethacrylate under mild photo initiating conditions. The effects of the Pluronic component on gel properties were investigated by measuring the degree of swelling with its temperature responsive behavior, the mechanical properties, and the morphology of the composite hydrogels. With increased Pluronic content, the modified PHEMA hydrogels exhibited an increase in the degree of swelling, and the swelling showed an enhanced thermo-responsive behavior that was completely reversible. In addition, improved mechanical strength and the development of a microporous gel morphology were observed in hydrogels containing Pluronic.

The Effect of Salt and pH on the Phase Transition Behaviors of pH and Temperature-Responsive Poly(N,N-diethylacrylamide-co-methylacrylic acid)

  • Liu, Tonghuan;Fang, Jian;Zhang, Yaping;Zeng, Zhengzhi
    • Macromolecular Research
    • /
    • v.16 no.8
    • /
    • pp.670-675
    • /
    • 2008
  • A series of pH and temperature-responsive (N,N-diethylacrylamide-co-methylacrylic acid) copolymers were synthesized by radical copolymerization and characterized by elemental analysis, Fourier-transform infrared (FT-IR), nuclear magnetic resonance (NMR) $^1H$, $^{13}C$ and LLS. The effects of salt and pH on the phase transition behaviors of the copolymers were investigated by uv. With increasing NaCl concentration, significant salt effects on their phase transition behaviors were observed. UV spectroscopic studies showed that the phase transition became faster with increasing NaCl concentration. In addition, the phase transition behaviors of copolymers were sensitive to pH. The pH and temperature sensitivity of these copolymers would make an interesting drug delivery system.

Magnetic Properties of Modified DNAs

  • Do, Eui-Doo;Lee, Chang-Hoon;Kwon, Young-Wan;Choi, Dong-Hoon;Jin, Jung-Il;Oh, Dong-Keun;Nishide, Hiroyuki;Kurata, Takashi
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.3-4
    • /
    • 2006
  • Natural DNAs in dry state, i.e., A-DNAs, when intercalated with low levels of stable organic free radicals or complexed with low levels of Au(III), are attracted at room temperature to commercial magnets, whereas those containing high levels of intercalators or Au(III) are not. This surprising observation is explained by the EPR spectra and SQUID measurement of magnetization of the modified DNAs. It is conjectured that A-DNAs are morphologically heterogeneous containing ordered and disordered regions. The ordered regions appear to strongly mediate magnetic interactions between spins through their ${\pi}_z$-stacked structures. When the modified DNAs are wet or hydrated, they behave diamagnetically.

  • PDF

Chemoenzymatic Synthesis of Dual-responsive Amphiphilic Block Copolymers and Drug Release Studies

  • Chen, Peng;Li, Ya-Peng;Wang, Shu-Wei;Meng, Xin-Lei;Zhu, Ming;Wang, Jing-Yuan
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.1800-1808
    • /
    • 2013
  • Dual-responsive amphiphilic block copolymers were synthesized by combining enzymatic ring-opening polymerization (eROP) of ${\varepsilon}$-caprolactone (CL) and ATRP of N,N-dimethylamino-2-ethyl methacrylate (DMAEMA). The obtained block copolymers were characterized by gel permeation chromatography (GPC), $^1H$ NMR and FTIR-IR. The critical micelle concentration (CMC) of copolymer was determined by fluorescence spectra, it can be found that with hydrophilic block (PDMAEMA) increasing, CMC value of the polymer sample increased accordingly, and the CMC value was 0.012 mg/mL, 0.025 mg/mL and 0.037 mg/mL for $PCL_{50}$-b-$PDMAEMA_{68}$, $PCL_{50}$-b-$PDMAEMA_{89}$, $PCL_{50}$-b-$PDMAEMA_{112}$, $PCL_{50}$-b-$PDMAEMA_{89}$ was chosen as drug carrier to study in vitro release profile of anti-cancer drug (taxol). The temperature and pH dependence of the values of hydrodynamic diameter (Dh) of micelles, and self-assembly of the resulting block copolymers in water were evaluated by dynamic light scattering (DLS). The result showed that with the temperature increasing and pH decreasing, the Dh decreased. Drug-loaded nanoparticles were fabricated using paclitaxel as model. Transmission electron microscopy (TEM) and atomic force microscopy (AFM) had been explored to study the morphology of the hollow micelles and the nanoparticles, revealing well-dispersed spheres with the average diameters both around 80 nm. In vitro release kinetics of paclitaxel from the nanoparticles was also investigated in different conditions (pH and temperature, etc.), revealing that the drug release was triggered by temperature changes upon the lower critical solution temperature (LCST) at pH 7.4, and at $37^{\circ}C$ by an increase of pH.

Preparation of PNIPAM Hydrogel Containing Lipoic Acid (리포익산을 함유한 PNIPAM 하이드로젤의 제조)

  • Yoon, Hye-Ri;Lee, Jong-Hwi
    • Polymer(Korea)
    • /
    • v.36 no.4
    • /
    • pp.455-460
    • /
    • 2012
  • Poly(N-isopropylacrylamide) (PNIPAM) hydrogel has been studied as an important drug delivery system due to its volume transition or temperature-responsive swelling properties, whose phase separation temperature is similar to the body temperature. However, because of hydrophilic PNIPAM, hydrophobic drugs are difficult to be uniformly loaded in the networks. Antioxidant alpha-lipoic acid (LA) can be prepared as a polymer(polylipoic acid, PLA) by ring opening polymerization, which is hardly developed as a material due to its low molecular weight and easy depolymerization. To overcome this limitation, a hydrophobic active ingredient, LA was reacted with NIPAM into stable hydrogels. Simple thermal radical reaction successfully resulted in a hydrogel (PNIPAM/PLA), which was confirmed by DSC, FTIR, and Raman spectroscopy. The PNIPAM/PLA showed temperature-responsive properties, and their volume swelling decreased with an increase in lipoic acid content. These hydrogels can carry hydrophobic drugs with PNIPAM and the hydrogels could be useful as final drug delivery systems having lipoic acid as an antioxidant.

The Preparation of a Thermally Responsive Surface by Ion Beam-induced Graft Polymerization

  • Jung, Chang-Hee;Kim, Wan-Joong;Jung, Chan-Hee;Hwang, In-Tae;Choi, Jae-Hak
    • Journal of Radiation Industry
    • /
    • v.6 no.4
    • /
    • pp.317-322
    • /
    • 2012
  • In this study, the preparation of a temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm)-grafted surface was performed using an eco-friendly and biocompatible ion beam-induced surface graft polymerization. The surface of a perfluoroalkoxy (PFA) film was activated by ion implantation and N-isopropylacrylamide (NIPAAm) was then graft polymerized selectively onto the activated regions of the PFA surfaces. Based on the results of the peroxide concentration and grafting degree measurements, the amount of the peroxide groups formed on the implanted surface was dependant on the fluence, which affected the grafting degree. The results of the FT-IR-ATR, XPS, and SEM confirmed that the NIPAAm was successfully grafted onto the implanted PFA. Moreover, the contact angle measurement at different temperatures revealed that the surface of the PNIPAAm-grafted PFA film was temperature-responsive.

Screening of Potential Stress-Responsive and Immune-Related Genes by Expressed Sequence Tags in Mud Loach (Misgurnus mizolepis)

  • Nam, Yoon-Kwon;Kim, Dong-Soo
    • Journal of fish pathology
    • /
    • v.15 no.2
    • /
    • pp.83-92
    • /
    • 2002
  • EST analysis was performed to identify stress-responsive and immune-related genes from mud loach (Misgurnus mizolepis), cDNA libraries were constructed with liver, intestine and kidney tissues and randomly chosen clones (216 for liver, 198 for intestine and 224 for kidney) were subjected to automated sequence analysis. Of 638 clones sequenced in totlal, approximalely 25% of ESTs was novel sequences (no match to GenBank) or sequences with high homology to hypothrtical/unknown genes. Several potential stress-responsive biomarker and/or immure-related genes were identified in all the tissues examined. It included lectin, MHC class I/II proteins, proteinase inhibitors, superoxide dismulase, catalase, glutathionc-S. transferase, heat-shock protein, warm temperature acclimation protein, complements, methylrransferasc, zinc finger proteins, macrophage maturation associated protein, and others. This information will offer new possibilities as fundamental baseline data for the molecular genetics and breeding of this species with an emphasis on the development of stress. (and disease)-resistsnt fish.

Tunable Photonic Band Gap Materials and Their Applications

  • Gang, Yeong-Jong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.261-261
    • /
    • 2010
  • Photonic band gap (PBG) materials have been of great interest due to their potential applications in science and technology. Their applications can be further extended when PBG becomes tunable against various chemical and electrical stimuli. In recent, it was found that tunable photonic band gap materials can be achieved by incorporating stimuli-responsive smart gels into PBG materials. For example, the characteristic volume phase transition of gels in response to the various external stimuli including temperature, pH, ionic strength, solvent compositions and electric field were recently combined with the unique optical properties of photonic crystals to form unprecedented highly responsive optical components. Since these responsive photonic crystals are capable of reversibly converting chemical or electrical energy into characteristic optical signals, they have been considered as a good platform for label-free chemical or biological detection, actuators or optical switches as well as a model system for investigating gel swelling behavior. Herein, we report block copolymer photonic gels self-assembled from polystyrene-b-poly (2-vinyl pyridine) (PS-b-P2VP) block copolymers. In this talk, we are going to demonstrate that selective swelling of lamellar structure can be effectively utilized for fabricating PBG materials with extremely large tunability. Optical properties and their applications will be discussed.

  • PDF