• Title/Summary/Keyword: temperature-dependent DNA binding activity

Search Result 3, Processing Time 0.028 seconds

Temperature-dependent DNA binding of DicA protein in vivo and in vitro (In vivo와 in vitro에서 DicA 단백질의 온도 의존적 DNA 결합)

  • Lee, Yonho;Yun, Sang Hoon;Lim, Heon M.
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.181-190
    • /
    • 2019
  • In Escherichia coli, DicA protein is involved in cell division control. DicA protein is known to bind DNA better at $25^{\circ}C$ than at $37^{\circ}C$. However, the molecular cause of the temperature dependent binding is not clear. In this study, we investigated how DicA binds DNA and why its DNA binding activity depends on temperature. An unique in vivo DNA binding assay developed in this laboratory showed that unlike the homologous proteins such as RovA or SlyA, DicA uses its N-terminal domain for DNA binding. The in vivo DNA binding assay of DicA also demonstrated that the temperature-dependent DNA binding activity does not come from Cnu or H-NS that is known to bind DNA better at $25^{\circ}C$ than at $37^{\circ}C$. Electrophoretic Mobility Shift Assay (EMSA), when performed with purified DicA protein, did not show temperature-dependent DicA binding activity. However when EMSA was performed with crude protein from WT E. coli cells, temperature-dependent DicA binding activity was observed, suggesting that there is a factor(s) that confers temperature DNA binding activity of DicA in vivo.

H-NS binding on dicA promoter DNA inhibits dicA gene expression (dicA promoter DNA에 붙는 H-NS 단백질에 의한 dicA 유전자의 발현 조절)

  • Yun, Sang Hoon;Lee, Yonho;Lim, Heon M.
    • Korean Journal of Microbiology
    • /
    • v.55 no.3
    • /
    • pp.191-198
    • /
    • 2019
  • H-NS binds to promoter DNA and works as a general transcription silencer. DicA protein, by binding to the promoter DNA of dicA, activates dicA expression and at the same time inhibits expression of dicF and dicB, thus, exerting cell division control in Escherichia coli. H-NS complexed with a nucleoid protein Cnu was known to be involved in dicA expression. However, the exact nature of H-NS binding to dicA promoter DNA and the consequences of H-NS binding in expression of dicA is not clear. In this study, we explored the DNA binding activity of H-NS on the promoter DNA of dicA and found that H-NS binding occurs exclusively to the dicA promoter DNA. We never observed, however, H-NS binding at the vicinity of the dicA promoter. Temperature dependent oligomerization of H-NS was observed during DNA binding and the Cnu protein enhances the oligomerization process of H-NS binding. In vivo measurement of dicA expression in an hns deleted strain showed that dicA expression increased. These results demonstrated that H-NS binds specifically to dicA promoter DNA and functions as a transcription silencer.

Expression Analysis of the csp-like Genes from Corynebacterium glutamicum Encoding Homologs of the Escherichia coli Major Cold-Shock Protein CspA

  • Kim, Wan-Soo;Park, Soo-Dong;Lee, Seok-Myung;Kim, Youn-Hee;Kim, Pil;Lee, Heung-Shick
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.8
    • /
    • pp.1353-1360
    • /
    • 2007
  • Three csp-like genes were identified in the Corynebacterium glutamicum genome and designated cspA, cspB, and cspA2. The genes cspA and cspA2 encode proteins, comprising of 67 amino acid residues, respectively. They share 83% identity with each other. Identity of those proteins with Escherichia coli Csp proteins was near 50%. The cspB gene encodes a protein composed of 127 amino acids, which has 40% and 35% sequence identity with CspA and CspA2, respectively, especially at its N-terminal region. Analysis of the gene expression profiles was done using transcriptional cat fusion, which identified not only active expression of the three genes at the physiological growth temperature of $30^{\circ}C$ but also growth phase-dependent expression with the highest activity at late log phase. The promoters of cspA and cspA2 were more active than that of cspB. The expression of the two genes increased by 30% after a temperature downshift to $15^{\circ}C$, and such stimulation was more evident in the late growth phase. In addition, the cspA gene appeared to show DNA-binding activity in vivo, and the activity increased at lower temperatures. Interestingly, the presence of cspA in multicopy hindered the growth of the host C. glutamicum cells at $20^{\circ}C$, but not at $30^{\circ}C$. Altogether, these data suggest that cspA, cspB, and cspA2 perform functions related to cold shock as well as normal cellular physiology. Moreover, CspA and its ortholog CspA2 may perform additional functions as a transcriptional regulator.