• 제목/요약/키워드: temperature loading

검색결과 1,319건 처리시간 0.028초

공항 콘크리트 포장 구조해석을 위한 3차원 유한요소 모형 개발 (Development of Three-Dimensional Finite Element Model for Structural Analysis of Airport Concrete Pavements)

  • 박해원;심차상;임진선;조남현;정진훈
    • 한국도로학회논문집
    • /
    • 제19권6호
    • /
    • pp.67-74
    • /
    • 2017
  • PURPOSES : In this study, a three-dimensional nonlinear finite element analysis (FEA) model for airport concrete pavement was developed using the commercial program ABAQUS. Users can select an analysis method and set the range of input parameters to reflect actual conditions such as environmental loading. METHODS : The geometrical shape of the FEA model was chosen by considering the concrete pavement located in the third-stage construction site of Incheon International Airport. Incompatible eight-node elements were used for the FEA model. Laboratory test results for the concrete specimens fabricated at the construction site were used as material properties of the concrete slab. The material properties of the cement-treated base suggested by the Federal Aviation Administration(FAA) manual were used as those of the lean concrete subbase. In addition, preceding studies and pavement evaluation reports of Incheon International Airport were referred for the material properties of asphalt base and subgrade. The kinetic friction coefficient between the concrete slab and asphalt base acquired from a preceding study was used for the friction coefficient between the layers. A nonlinear temperature gradient according to slab depth was used as an input parameter of environmental loading, and a quasistatic method was used to analyze traffic loading. The average load transfer efficiency obtained from an Heavy falling Weight Deflectomete(HWD) test was converted to a spring constant between adjacent slabs to be used as an input parameter. The reliability of the FEA model developed in this study was verified by comparing its analysis results to those of the FEAFAA model. RESULTS : A series of analyses were performed for environmental loading, traffic loading, and combined loading by using both the model developed in this study and the FEAFAA model under the same conditions. The stresses of the concrete slab obtained by both analysis models were almost the same. An HWD test was simulated and analyzed using the FEA model developed in this study. As a result, the actual deflections at the center, mid-edge, and corner of the slab caused by the HWD loading were similar to those obtained by the analysis. CONCLUSIONS : The FEA model developed in this study was judged to be utilized sufficiently in the prediction of behavior of airport concrete pavement.

Behavior of FRP bonded to steel under freeze thaw cycles

  • Toufigh, Vahab;Toufigh, Vahid;Saadatmanesh, Hamid
    • Steel and Composite Structures
    • /
    • 제14권1호
    • /
    • pp.41-55
    • /
    • 2013
  • Fiber reinforced polymers (FRP) materials are increasingly being used for strengthening and repair of steel structures. An issue that concerns engineers in steel members which are retrofitted with FRP is stress experienced due to temperature changes. The changing temperature affects the interface bond between the FRP and Steel. This research focused on the effects of cyclical thermal loadings on the interface properties of FRP bounded to steel members. Over fifty tests were conducted to investigate the thermal effects on bonding between FRP and steel, which were cycled from temperature of $-11^{\circ}C$ ($12^{\circ}F$) to $60^{\circ}C$ ($140^{\circ}F$) for 21-36 days. This investigation consisted of two test protocols, 1) the tensile test of epoxy resin, tack coat, FRP and FRP-steel plate, 2) tensile test of each FRP compound and FRP with steel after going through thermal cyclic loading. This investigation reveals an extensive reduction in the composite's strength.

티타늄디스크 근사정형 열간단조시 금형속도의 최적화 (Die-Speed Optimization in Titanium-Disk Near-Net Shape Hot-Forging)

  • 박종진
    • 대한기계학회논문집
    • /
    • 제19권4호
    • /
    • pp.896-907
    • /
    • 1995
  • Titanium 6242(.alpha. + .betha.) alloy has a good strength/weight ratio and is used for aircraft components such as engine disks and compressor blades. When this material is forged at an elevated temperature, the process parameters should be carefully controlled because the process window of this material is quite narrow. In the present investigation, a rigid-thermoviscoplastic finite element method is used to predict the deformation behavior and temperature/strain distributions in an engine disk during near-net shape hot forging. The purpose of the investigation is to obtain a proper ram speed profile, assuming the hydraulic press used in the forging is capable of varying ram speed during loading. In result, it was found that the ram speed at constant strain-rate of 0.5/sec shows a sound deformation behavior, a relatively uniform deformation and a good temperature distribution. This information is also valuable in predicting resulting microstructures in the disk.

Pd 촉매를 이용한 혈청 콜레스테롤 저하제 Stigmastanol의 합성 (Synthesis of Stigmastanol as a Serum Cholesterol-lowering substance Using Pd Catalyst)

  • 김의용
    • KSBB Journal
    • /
    • 제16권1호
    • /
    • pp.76-81
    • /
    • 2001
  • Stigmastanol, a functional agent of cholesterol-lowering in humans, was synthesized from stigmasterol. To investigate the usability as a raw material, the contents of sterol in vegetable oils and extract of soybean chaff were analyzed. The total sterol contents showed high values of 213.7 and 209.8 mg/100g in corn and soybean oils respectively. The extract of soybean chaff has played a good role as a raw material with high sterol contents. The kinetics of hydrogenation of stigmasterol was studied using a 5% Pd/AC catalyst in the temperature range of 30~$60^{\circ}$C. Increasing temperature showed a prominent decrease in conversion. The optimum temperature was $40^{\circ}$C for high yield of stigmastanol. The effects of $H_2$ pressure, agitation speed, catalyst loading, and stigmasterol concentration on reaction rate profile were also examined. From the power law model analysis using the initial rates of reaction, the reaction order was calculated as 0.705 for stigmasterol concentration and 0.147 for hydrogen pressure.

  • PDF

소형 가솔린 기관의 실린더 블록에 대한 열적 거동 해석 (Analysis of the thermal behaviors of the cylinder block of a small gasoline engine)

  • 김병탁;박진무
    • 오토저널
    • /
    • 제15권3호
    • /
    • pp.55-67
    • /
    • 1993
  • In this study, the thermal behavior characteristics of the cylinder block of a small 3-cylinder, 4-stroke gasoline engine were analyzed, using the 3-dimensional finite element method. Before numerical analyses were conducted, the performance test and the heat transfer experiment of the engine were carried out in order to prepare the input data for the computations. Engine cycle simulation was performed to obtain the heat transfer coefficient and the temperature of the gas and the mean heat transfer coefficient of coolant. Temperature fields as a result of steady-state heat transfer were obtained and compared with experimental results measured at specific points of the inner and the outer walls of the cylinder block. The thermal stress and deformation characteristics resulting from the nonuniform temperature distributions of the block were investigated. The effects of the thermal behaviors of the cylinder block on the engine operations and the unfavourable aspects of excessive thermal loading were examined on the basis of the calculated results.

  • PDF

고온하 화강암의 변형 및 파괴거동에 관한 연구 (A Study on the Mechanicla Behavior of Two Granites at Elevated Temperatures)

  • 장명환;양형식
    • 터널과지하공간
    • /
    • 제7권2호
    • /
    • pp.130-135
    • /
    • 1997
  • When crystalline rocks are heated, thermal stress is induced by the differences in thermal expansion of the mineral composition and its orientation. In this study, high temperature uniaxial compressive tests were carried out for Iksan and Hwangdeung granites to study the deformation and failure behavior due to thermal loading. Compressive and tensile strength of Hwangdeung granite for 20$0^{\circ}C$ decreased to 80% and 82% of the room temperature strength, and those of Iksan granite decreased to 90% and 92% for 20$0^{\circ}C$, respectively. Elastic moduli of both granites were decreased sharply at the stress level of 80% of ultimate failure strength. Elastic moduli of both granites by variation of temperature at 50% of ultimate failure strength was decreased as almost linearly.

  • PDF

LOW CYCLE THERMAL FATIGUE OF THE ENGINE EXHAUST MANIFOLD

  • Choi, B.L.;Chang, H.;Park, K.H.
    • International Journal of Automotive Technology
    • /
    • 제5권4호
    • /
    • pp.297-302
    • /
    • 2004
  • This paper presents the low cycle thermal fatigue of the engine exhaust manifold subject to thermo-mechanical cyclic loading. As a failure of the exhaust manifold is mainly caused by geometric constraints of the less expanded inlet flange and cylinder head, the analysis is based on the exhaust system model with three-dimensional temperature distribution and temperature dependent material properties. The result show that large compressive plastic deformations are generated at an elevated temperature of the exhaust manifold and tensile stresses are remained in several critical zones at a cold condition. From the repetition of these thermal shock cycles, maximum plastic strain range (0.454%) could be estimated by the stabilized stress-strain hysteresis loops. It is used to predict the low cycle thermal fatigue life of the exhaust manifold for the thermal shock test.

무기충전제(無機充塡劑)를 변량배합(變量配合)한 천연(天然)고무 가황체(加黃體)의 온도변화(溫度變化)에 따른 보강성효과(補强性效果)의 연구(硏究) (A Study on the Reinforcing Effects of Inorganic Filler Contained NR Vulcanizates with Temperature and Loading Variation.)

  • 최재운;홍청석;전경수
    • Elastomers and Composites
    • /
    • 제22권4호
    • /
    • pp.293-304
    • /
    • 1987
  • The purpose of this study is to examine the effect of rubber-filler attachments on inorganic filler contained NR vulcanizatic. The results of this study showed as follows. The reinforcing properties and damping values of the vulcanizates in the elastic region showed strong relation with the filler characteristics and temperture. The vulcanizates filled with nature-activated inorganic filler like silica had higer elastic modulus and damping values than the vulcanizates of nature-nonactivated inorganic filter. The reinforcing effects of differential filler loadings on NR raised the effects with temperature rise, but the damping values varied with the filler characteristics and temperature variations.

  • PDF

Low Temperature Catalytic Activity of Cobalt Oxide for the Emergency Escape Mask Cartridge

  • Park, Jae-Man;Kim, Deog-Ki;Shin, Chang-Sub
    • International Journal of Safety
    • /
    • 제1권1호
    • /
    • pp.58-61
    • /
    • 2002
  • A preparation method of cobalt supported alumina catalyst for a emergency escape mask cartridge has been studied. Catalysts were prepared by incipient wetness impregnation method using pre-shaped $\gamma$=alumina powders of 70-100 mesh. The catalyst was tested in a continuous-flow reactor system and characterized by elemental analysis, BET and TGA-DTA techniques. Cobalt shows higher activity than platinum or nickel for carbon monoxide oxidation at room temperature. Optimum loading amount of cobalt was 10 wt.% for CO oxidation and the reaction activity increases gradually with the increase of calcination temperature up to $450^{\circ}C.

초저온 볼 밸브 설계 및 특성 (Design and Characteristics of cryogenic ball valve)

  • 김동수;김명섭
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.666-671
    • /
    • 2007
  • To acquire the safety along with durability of mechanical machinery products, we should consider the structural mechanics such as stress, deformation and dynamic vibration characteristics and identify those important aspects in the stage of preliminary design engineering. This cryogenic ball valve is used to transfer the liquified natural gas which temperature is $-196^{\circ}C$, supplied pressure is $168kg/cm^2$. For the cryogenic ball valve, the assurance of structural integrity and operability are essential to meet not only normal, abnormal loading conditions but also functionality during a seismic event. In this thesis, analytical approach and results using finite element analysis and computational method are herein presented to evaluate the aspects of structural integrity along with operability of cryogenic ball valve. In this study, we designed the high pressure cryogenic ball valve that accomplishes zero leakage by elastic seal at normal temperature and metal seal at high temperature.

  • PDF