• Title/Summary/Keyword: temperature loading

Search Result 1,316, Processing Time 0.031 seconds

Analysis of Thermal Loading of a Large LPG Engine Piston Using the Inverse Heat Conduction Method (열전도의 역문제 방법을 이용한 대형 LPG 엔진 피스톤의 열부하 해석)

  • Park Chul-Woo;Lee Boo-Youn
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.820-827
    • /
    • 2006
  • The convection heat transfer coefficients on the top surface of a large liquid petroleum liquid injection(LPLi) engine piston are analyzed by solving an inverse thermal conduction problem. The heat transfer coefficients are numerically found so that the difference between analyzed temperatures from the finite element method and measured temperatures is minimized. Using the resulting heat transfer coefficients as the boundary condition, temperature of a large LPLi engine piston is analyzed.

  • PDF

The green sheet properties of multilayer chip filter for mobile communication (이동통신용 적층 칩 필타 제작에서의 green sheet 특성)

  • 윤중락;이헌용
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.443-446
    • /
    • 1997
  • This paper presents green sheet Properties of multilayer chip filter for mobile communication. The role of solid loading content and lamination conditions in determining some of the green sheet properties are present. The optimun conditions were obtained solid loading 62:38, lamination temperature 7$0^{\circ}C$, lamination press 300~400 Kg/$\textrm{cm}^2$.

  • PDF

Numerical Analysis of Responses of a Elasto-plastic Tube under Kerosene-air Mixture Detonation (케로신-공기 혼합물의 비정상연소 모델과 탄소성 관의 동적 거동 수치해석)

  • Lee, Younghun;Gwak, Min-cheol;Yoh, Jai-ick
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.169-172
    • /
    • 2015
  • This paper presents a numerical investigation on kerosene-air mixture detonation and behaviors of thermal elasto-plstic thin metal tube under detonation loading based on multi-material analysis. The detonation loading is modeled by the kerosene-air mixture detonation which is compared with CJ condition and experimental cell size. And the thermal softening effect on elasto-plstic model of metal tube is indicated by different dynamic response of detonation loaded tube in various temperature and tube thickness.

  • PDF

An Oxyfluorination Effect of Carbon Nanotubes Supports on Electrochemical Behaviors of Platinum Nanoparticle Electrodes (백금 나노입자전극의 전기화학적 거동에 대한 카본나노튜브 지지체의 산소-불소 처리효과)

  • Kim, Seok;Lee, Jae-Rock;Park, Soo-Jin
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.118-123
    • /
    • 2008
  • In the present study, the effect of oxyfluorination treatment on multi-walled nanotubes (MWNTs) supports was investigated by analyzing surface functional groups. The surface characteristics were determined by Fourier transformed-infrared (FT-IR) and X-ray photoelectron spectroscopy (XPS). After the deposition of platinum nanoparticles on the above treated carbon supports, a crystalline size and a loading level had been investigated. Electrochemical properties of the treated MWNTs-supported Pt (Pt/MWNTs) catalysts were analyzed by current-voltage curve measurements. From the results of surface analysis, an oxygen and fluorine-containing functional group had been introduced to the surface of carbon supports. The oxygen and fluorine contents were the highest value at the treatment of 100 temperature. The Pt/100-MWNTs showed the smallest particle crystalline size of 3.5 nm and the highest loading level of 9.4% at the treatment of 100 temperature. However, the sample treated at the higher temperature showed the larger crystalline size and the lower loading level. This indicated that the crystalline size and the loading level could be controlled by changing the temperature of oxyfluorination treatment. Accordingly, an electrochemical activity was enhanced by increasing the temperature of treatment upto 100, and then decreased in the case of 200 and 300. The highest specific current density of 120 mA/mg had been obtained in the case of Pt/100-MWNTs.

The Loading History Effect on the Track-bridge Interaction (궤도-교량의 상호작용에 대한 하중이력의 영향)

  • Yun, Kyung-Min;Han, Sang-Yun;Hwang, Man-Ho;Kim, Hae-Gon;Lim, Nam-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.3156-3159
    • /
    • 2011
  • In case of the continuous welded rail(CWR) track is supported by the railway bridge, the additional axial force is occurred in the CWR due to the track-bridge interaction. In the various design codes such as Korean code, European code, UIC code, etc, three important loads(temperature variation in the bridge-deck, braking/acceleration and the bending of the bridge-deck resulted from the passing train) are treated as the independent loading case. In other words, the additional axial force can be obtained by summing up the three different values calculated by the three independent analysis. However, this analysing method may have an error because the behavior of the longitudinal resistance between the rail and the bridge-deck is under the highly nonlinear. Therefore, in order to exactly analyse the track-bridge interaction, nonlinear loading history and the change of the longitudinal resistance owing to the loading history must be considered in the analysis process. In this study, the loading history effect on the track-bridge interaction is investigated considering the resonable combination of three loads and the longitudinal resistance change.

  • PDF

A Study on an Aerobic Fluidized-Bed Biofilm Reactor for Treating Industrial Wastewaters(II) -Effect of Organic Shock Loading Rate on Biomass Characteristics- (산업폐수처리를 위한 호기성 생물막 유동층 반응기의 연구(II) -유기물 충격 부하가 미생물 성장에 미치는 영향-)

  • 안갑환;박영식;최윤찬;김동석;송승구
    • Journal of Environmental Science International
    • /
    • v.2 no.4
    • /
    • pp.325-330
    • /
    • 1993
  • A number of experiments were conducted in order to investigate the organic removal efficiency and biomass characteristics according to the organic shock loading rate in a fluidized bed biofilm reactor. At the operation conditions of HRT, 8.44 hour, superficial upflow velocity, 0.9 cm/sec and temperature, 22$\pm$$1^{\circ}C$, the removal efficiency of SCOD was founded to be 96.5, 92 and 90 % with the organic shock loading rate of 3.5, 10.8 and 33 kgCOD/m$^3$ㆍday, respectively. Within the F/M ratio ranged 0.4 to 2.0 kgCOD/kgVSSㆍday, the SCOD removal efficiency was shown as 90% at F/M ratio of 2.0 kgCOD/kgVSSㆍday, but the TCOD removal efficiency was 72 % at F/M ratio of 1.8 kgCOD/kgVSSㆍday. The average biomass concentrations were 7800, 14950 and 27532 mg/l on the organic shock loading rate of 3.5, 10.8 and 33 kgCOD/$\textrm{m}^3$ㆍday, respectively. This result was agreed with the fact that more biomass could be produced at high concentration of substrate, but some biomass was detached at the onset of shock and easily acclimated at the shock condition.

  • PDF

Influence of Loading on the Corrosion of Reinforcing Bar (철근콘크리트 보의 철근부식에 미치는 하중의 영향에 관한 연구)

  • 김형래;윤상천;지남용
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.3
    • /
    • pp.171-179
    • /
    • 1999
  • The present research investigated the interaction among loading level, corrosion rate and flexural deflection of reinforced concrete beams. 10cm$\times$15cm$\times$110cm reinforced concrete beams were prepared and subjected to different levels of flexural loading, including 0%, 45% and 75% of the ultimate load. The beams with either a pre-load or a sustained load were also exposed to a laboratory environment with ponding and wetting/drying cycling at room temperature. Half cell potential and galvanized current measurements were taken to monitor corrosion process of reinforcing steel. After corrosion initiation, external current was applied to some of the beams to accelerate corrosion propagation. The beam deflections were recorded during the entire tests. The results indicate that loading level has significant effect on corrosion rate. The beams under a sustained load had much higher corrosion rate than the pre-loaded and then unloaded beams. Significant corrosion may result in an increase in beam deflection and affect serviceability of the structure. The present research may provide an insight into structural condition evaluation and service life predictions of reinforced concrete.

Numerical study on fire resistance of cyclically-damaged steel-concrete composite beam-to-column joints

  • Ye, Zhongnan;Heidarpour, Amin;Jiang, Shouchao;Li, Yingchao;Li, Guoqiang
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.673-688
    • /
    • 2022
  • Post-earthquake fire is a major threat since most structures are designed allowing some damage during strong earthquakes, which will expose a more vulnerable structure to post-earthquake fire compared to an intact structure. A series of experimental research on steel-concrete composite beam-to-column joints subjected to fire after cyclic loading has been carried out and a clear reduction of fire resistance due to the partial damage caused by cyclic loading was observed. In this paper, by using ABAQUS a robust finite element model is developed for exploring the performance of steel-concrete composite joints in post-earthquake fire scenarios. After validation of these models with the previously conducted experimental results, a comprehensive numerical analysis is performed, allowing influential parameters affecting the post-earthquake fire behavior of the steel-concrete composite joints to be identified. Specifically, the level of pre-damage induced by cyclic loading is regraded to deteriorate mechanical and thermal properties of concrete, material properties of steel, and thickness of the fire protection layer. It is found that the ultimate temperature of the joint is affected by the load ratio while fire-resistant duration is relevant to the heating rate, both of which change due to the damage induced by the cyclic loading.

Analytical Examination of Ductile Crack Initiation with Strength Mismatch under Dynamic Loading - Criterion for Ductile Crack Initiation Effect of Strength Mismatch and Dynamic Loading (Report 2) - (동적하중하에서의 강도적 불균질재의 연성크랙 발생한계의 해석적 검토 - 강도적 불균질 및 동적부하의 영향에 의한 연성크랙 발생조건 (제 2 보) -)

  • ;Mitsuru Ohata;Masahito Mochizuki;;Masao Toyoda
    • Journal of Welding and Joining
    • /
    • v.21 no.7
    • /
    • pp.49-58
    • /
    • 2003
  • It has been well known that ductile fracture of steel is accelerated by triaxiality stresses. The characteristics of ductile crack initiation in steels are evaluate quantitatively using two-parameter criterion based on equivalent plastic strain and stress triaxiality. Recently, the characteristics of critical crack initiation of steels are quantitatively estimated using the two-parameter, that is, equivalent plastic strain and stress triaxiality, criterion. This study is paid to the fundamental clarification of the effect of geometrical heterogeneity and strength mismatching, which can elevate plastic constraint due to heterogeneous plastic straining, and loading rate on critical condition to initiate ductile crack using two-parameter. Then, the crack initiation testing were conducted under static and dynamic loading. To evaluate the stress/strain state in the specimens especially under dynamic loading, thermal elastic-plastic dynamic FE-analysis considering the temperature rise was used. The result showed that the critical global strain to initiate ductile fracture in specimens with strength mismatch under various loading rate cu be estimated based on the local criterion, that is two-parameter criterion obtained on homogeneous specimens under static tension, by mean of FE-analysis taken into account accurately both strength mismatch and dynamic loading effects on stress/strain behavior.