• Title/Summary/Keyword: temperature fluctuations

Search Result 379, Processing Time 0.026 seconds

Numerical Modeling of Current Density and Water Behavior at a Designated Cross Section of the Gas Diffusion Layer in a Proton Exchange Membrane Fuel Cell (고분자전해질 연료전지의 동작압력에 대한 가스 확산층의 위치 별 전류밀도 및 수분거동에 대한 수치해석)

  • Kang, Sin-Jo;Kim, Young-Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.161-170
    • /
    • 2012
  • There are many factors to consider when attempting to improve the efficiency of fuel cell operation, such as the operation temperature, humidity, stoichiometry, operation pressure, geometric features, etc. In this paper, the effects of the operation pressure were investigated to find the current density and water saturation behavior on a cross section designated by the design geometry. A two-dimensional geometric model was established with a gas channel that can provide $H_2$ to the anode and $O_2$ and water vapor to the cathode gas diffusion layer (GDL). The results from this numerical modeling revealed that higher operation pressures would produce a higher current density than lower ones, and the water saturation behavior was different at operation pressures of 2 atm and 3 atm in the cathode GDL. In particular, the water saturation ratios are higher directly below the collector than in other areas. In addition, this paper presents the dependence of the velocity behavior in the cathode on pressure changes, and the velocity fluctuations through the GDL are higher in the output area than in inlet area. This conclusion will be utilized to design more efficient fuel cell modeling of real fuel cell operation.

The Relationship between the Fishing Grounds and Oceanographic Condition Associated with Fluctuation of Mackerals Catches in the East China Sea (고등어 어획량 변동에 따른 동지나해의 어장과 해황)

  • Jo, Gyu-Dae;Hong, Cheol-Hun;Kim, Yong-Mun
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.20 no.2
    • /
    • pp.83-90
    • /
    • 1984
  • The secular fluctuations of catches and fishing grounds of mackerals and the oceanographic conditions for the fishing grounds are examined by using the data of catches of mackerals by middle and large class purse-seiner during 1951 to 1981 and those of oceanographic observation carried out by Japan Meteorological Agency. The results are as follows; The fishing grounds of mackerals are respectively distributed at northeastern and southwestern areas from the central part of the East China Sea through every season of the studied years: 1968, 1974 and 1980. The narrow belt type of fishing grounds were formed inside of the Kuroshio in spring and winter of the three years. In summer mackeral species move northward and the fishing grounds are formed in the southern sea of Korea. In winter, however, mackeral species move southward and the fishing grounds are appeared in the Tsushima Current region. The dispersion of fishing grounds is generally larger in summer and smaller in spring, and especially it is the largest in summer in 1980. It seems that the concentration and dispersion of fishing grounds are related to the depth of thermocline and the position of horizontal temperature gradient in this area.

  • PDF

Spatio- and temporal patterns of benthic environment and macrobenthos community on subtidal soft-bottom in Chonsu Bay, Korea (천수만 조하대 연성저질의 저서환경과 저서동물 군집의 시${\cdot}$공간적 양상)

  • PARK Heung-Sik;LIM Hyun-Sig;HONG Jae-Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.3
    • /
    • pp.262-271
    • /
    • 2000
  • This study was carried out to clarify the spatial and temporal patterns of benthic environments and macrobenthos on the subtidal soft-bottom in Chonsu Bay. Seasonal surface water temperature was similar to the bottom layer, but freshwater discharges into the outlets dereased the surface salinity around the dyke in summer. Bottom dissolved oxygen was decreased deeply around the dyke and created the de-oxygenated layer during summer. Sediment grain size was consisted of finer at the neighboring of the dyke than the mouth of the bay. Organic matters including the sediment were decreased at the mouth of the bay. A total of 311 species ($769\;ind./m^2$) were identified. Polychaetes were the most abundant faunal group in the number of species and densities. The number of species revealed the spatial patterns that it was higher in the mouth of the bay, and their densities showed seasonal changes by mass recruitment occurred at the most of the area in summer, At this time, opportunistic species, Lumbrineris iongifolia and Theora fragilis, were also recruited massively. Chonsu Bay were classified into five station groups by the cluster analysis. The dominant species around the dyke were composed to opportunistic species, those in middle area were Sternaspis scutata, Paraplionospio pinnata, and those in the mouth of the bay were Mediomastus californiensis, Nephtys polybranchia. Seasonal fluctuations and spatial difference of environments seem to have influenced to the species compositions and affected to the stability of benthic ecosystems spatial-temporally In Chonsu nay.

  • PDF

Structures and Variability of the T-S field and the Current across the Korea Strait (대한해협 횡단면 상의 수온-염분과 해류의 구조 및 변동)

  • RO, YOUNG JAE;PARK, MOON-JIN;LEE, SANG-RYONG;LEE, JAE CHUL
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.237-249
    • /
    • 1995
  • To understand the cross-sectional structures of temperature, salinity and current across the Korea Strait, field measurements were carried out for the period of May 2 to 20, 1994. Using the R/V Tam Yang, detailed CTD profiles and ADCP records were obtained and used to examine the mean and variability field on two time scales (15 days and 25 hours). A sharp coastal front in the middle of the Korea Strait exists across which two different water masses, i.e., warm and saline water in the eastern side and cold and less saline water in the western side are neighboring. We observed highly variable field of T and S apparently caused by the westward movement of warm and saline water mass. Short-term fluctuations of T and S in the middle layer are remarkable and their importance was analysed as the first Eigen mode accounting for more than 50% of total variances. The currents in th Korea Strait are strongly influenced by tidal currents with spring and neap variation whose maximum speed ranges 80-90 and 60-70 cm/s respectively near the central portion of the channel. Strong southward tidal current could even mask the Tsushima Current completely. Results of harmonic analysis show that the magnitudes of semidiurnal, diurnal and mean components of currents are comparable to each other at spring and neap tide conditions. The volume transport across the western channel of the Korea Strait were estimated to be 2.1 Sv at neap tide condition and 3.4 Sv at spring tide condition.

  • PDF

Physical Environment Changes in the Keum River Estuary Due to Dike Gate Operation: III. Tidal Modulation of Low-salinity Water (하구언 수문 작동으로 인한 금강 하구역의 물리적 환경변화: III. 저염수의 조석동조)

  • Choi, Hyun-Yong;Kwon, Hyo-Keun;Lee, Sang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.3
    • /
    • pp.115-125
    • /
    • 2001
  • To examine the movement of the freshwater discharged artificially into the estuary during ebbing period in the Keum River dike we observed surface salinity variations in three stations along the estuary channel in May 1998 and July 1997 and surface temperature and salinity along the ferry-route between Kunsan and Changhang during eighteen days in July 1999. Based upon the typical features of observed salinity variation, we analyzed the excursion and decay processes of the discharged water. When freshwater is discharged, the low-salinity water forms strong salinity front over the entire estuary width, which basically moves forth and back by tidal modulation along the channel, producing the sudden change of surface salinity with the front passage. Salinity distribution along the channel, which is deduced from time variation of mean salinity over the estuary width, after one tidal period from gate operation suggests that diluted low-salinity water is trapped to the front and surface salinity increases gradually toward the upstream region. This frontal distribution of salinity is interpreted to be produced by the sudden gate operation supplying and stopping of freshwater within about two hours. Daily repeat of freshwater discharge produces separation (double front) or merge between decaying and new-generated fronts depending on dike-gate opening time, and the front decays with salinity increasing if the freshwater supply is stopped more than two days. In addition, the observed fluctuations and deviations in surface salinity variation is explained in terms of the differences of fronts intensity, their transition time and temporal salinity front running along the channel, which can be generated due to artificial gate-operation for the discharging time and water volume in the estuary dike.

  • PDF

500-days Continuous Observation of Nutrients, Chlorophyll Suspended Solid and Salinity in the Keum Estuary, Korea (금강 하구역에서 영양염류, 엽록소, 부유물질과 염분변화에 대한 500일간의 연속관측)

  • Lee, Yong-Hyuk;Yang, Jae-Sam
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • We have monitored nutrients, chlorophyll, suspended solids, and salinity in the Keum Estuary to understand the temporal fluctuation of oceanographic parameters and to illustrate any variation due to the gate operation of the Keum River Dike from June, 1995 to September, 1996, approximately for 500 days. Tidal range is used as the key factor to explain the fluctuations and atmospheric parameters such as air temperature, wind velocity and rainfall are also used supplementally. The fresh water discharge was selected as another major impact on the estuarine environment due to the gate operation of the Keum Dike. In addition, daily variation by tidal cycle was investigated twice in April and July, 1996. In diurnal variation, salinity was positively correlated with tidal elevation, whereas negatively correlated with nutrients. Relatively high suspended solid and chlorophyll contents were found in the period between high and low tide. In 500 days continuous observations, salinity was negatively correlated with the volume of fresh-water discharge, but positively correlated with nutrients. A major chlorophyll bloom occurred in spring. A similar pattern of variation was observed between suspended solid and the neap-spring tidal cycle. In comparison with the data of the Keurn Estuary before the gate operation of the Keum River dike, fresh-water discharge predominated other environmental factors during the rainy season. In addition, the velocity of tidal current and the concentration of suspended solid were decreased, while nutrients and chlorophyll contents were increased.

  • PDF

Interannual and Seasonal Fluctuations of Nutrients, Suspended Solids, Chlorophyll, and Trophic Sate along with Other General Water Quality Parameters Near Two Intake Towers of Daechung Dam

  • Lee, Sun-Goo;Han, Jeong-Ho;Lee, Jae-Hoon;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.492-502
    • /
    • 2010
  • The study objects were to analyze long-term and seasonal variations of nutrients (N, P), suspended solids, N:P ratios, algal chlorophyll, and trophic state along with general water quality parameters in four sampling sites including two intake tower sites supplying drinking water in Daechung Reservoir. For the analysis, we used water quality long-term data sampled during 1998~2007 by the Ministry of Environment, Korea. Interannual and seasonal trends in inflow and discharge near the intake tower facilities over the ten years were directly influenced by rainfall pattern. The distinct difference between wet year (2003) and dry year (2001) produced marked differences in water temperature, pH, dissolved oxygen, organic matter contents, nutrients, and these variables influenced algal biomass and trophic state. Values of TP varied depending on the year and locations sampled, but monthly mean TP always peaked during July~August when river inflow and precipitation were maxima. In contrast, TN varied little compared to TP, indicating lower influence by seasonal flow compared to phosphorus. The number of E. coli were highest in Site 2 (Chudong intake tower) and varied largely, whereas at other sites, the numbers were low and low variations. Contents of chlorophyll-${\alpha}$ (CHL), as an estimation of primary productivity, varied largely depending on the year and season. The maximum of CHL occurred at Muneu intake tower (S4) during 2006 when the precipitation and inflow were lowest. In contrast, another CHL peak was observed in Site 2 (Chudong intake tower) in 2006 when one of the largest typoons (Ewinia) occurred and river runoff were maximum. So the CHL maxima were associated with both wet year (high flow, high nutrient supply) and dry year (low flow, nutrient supply by littoral zone). Such conditions influenced trophic states, based on Trophic State Index of nutrients and CHL. Based on all analyses, we can provide some clues for management and protection strategies of two intake tower sites.

The Seasonal and Regional Distribution of Phytoplankton Communities in the Fisheries Resources Protection Area of Korea in 2016 (2016년 한국 수산자원보호해역에서 식물플랑크톤 군집의 계절 및 해역별 분포)

  • Yoo, Man Ho;Park, Kyung Woo;Oh, Hyun Ju;Koo, Jun Ho;Kwon, Jung No;Youn, Seok Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.288-293
    • /
    • 2018
  • This study was conducted to understand the characteristics of the seasonal and regional distribution of phytoplankton communities in the Fisheries Resources Protection Area of Korea (FRPA). We investigated the phytoplankton composition, abundance and dominant species collected from five different regions (Cheonsu, Tongyeong-I, Tongyeong-II, Hansan, and Jindong) in 2016. According to the results, most environmental parameters, such as temperature, salinity and nutrients, showed statistically significant seasonal differences. Suspended particulate material (SPM) only showed a statistically significant regional difference. The mean abundance of phytoplankton ranged from 13 to $4,062cells{\cdot}ml^{-1}$, with large spatio-temporal fluctuations. In particular, the bloom of phytoplankton (>$10^3cells{\cdot}ml^{-1}$) in Cheonsu Bay occurred in April and October with Skeletonema spp. and Chaetoceros socialis being the dominant species during these two seasons, respectively. The dominant species in the FRPA were diatoms (Pseudo-nitzschia spp., Skeletonema spp., and Chaetoceros pseudocriniuts) and dinoflagellates (Scrippsiella trochoidea and Tripos furca). The seasonal distribution of phytoplankton communities showed typical characteristics of coastal waters, i.e., that diatoms usually dominated in winter and autumn, while dinoflagellates tended to dominate in spring and summer. Meanwhile, the dominance rate of diatoms in the phytoplankton community in Cheonsu Bay, which is located in a high-turbidity region, was 9~27 % greater than that of diatoms in the phytoplankton community found in the south coastal waters, which is a low turbidity region.

On the Morphological Variations and Special Feature of the Elongated and the Stunted Forms in the Short Necked Clam, Tapes japonica (바지락패곡의 형태변이와 바지락의 장형, 단형의 형태적 특성에 관하여)

  • CHOE, Sang
    • The Korean Journal of Zoology
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 1965
  • The short-necked clam is distributed widely in Korean tidal flats and it is a much an important bivalve quantitatively as to control the production of the tidal flat. The shell of this clam tends to show remarkable morphological variations depending on the habitat. Under a seemingly favorable condition for the growth , the color pattern of shell of the clam is clear and obvious and having less weight and elongated shape, the ratios of shell length to both height and width are small . On the contrary , when the environment appears to be an unfavorable one, the shell is found to be heavy and stunted with smudgy color pattern. If this correlation between could be a basis for the judgement in suitability of growth environment for the clam. In the Ikawazu Bay, Japan, it is revealed that the elongated shell is produced from the coast outside of the Bay (1) , the stunted from the esturay (2) and the intermediate from the floodgate area (3) and the middle of the Bay (4). Followings are the results obtained from the morphological investigation of the claim in this Bay. 1. Relationship between the shell length and the largest shell rib length is linear and between the shell length and the shell width is also linear but with a critical point at the shell length of 17-20 mm. The ratio between the width and the largest rib length at a given shell length increases with the order of 1, 3, 4, and 2. 2. A gradual decreases of the ratio of the shell length to the largest rib length is observed when the former is less than 17-18 mm, and this ratio increases with the shell of longer. Also there is a different range of this ratio in each different location ; the greatest range in 2, the smallest in 1 and 4 being in between. 3. A similar biometric finding is apparent with the ratio between the length and width of the shell and the order in value is 2, 4, 1 and 3. 4. The ratios between the length and the largest rib length of elongated and stunted shell are 0.84-0.86 and 0.89-0.92, respectively , and those between the length and width are 0.40-0.51 and 0.49-0.58, respectively. 5. Generally , the elongated short necked clam shells are products of the tidal flat of good circulation of sea water with high salinity and smaller fluctuations of salinity and temperature within a day. The stunted shells are produced for tidal flats of opposite of above conditions.

  • PDF

Spatial and Temporal Patterns of Coralline Algae around Three Nuclear Power Plants on the East Coast of Korea (동해안 3개 원전 주변 산호말류의 시.공간적 분포양식)

  • Ahn, Jung-Kwan;Kim, Young-Hwan
    • Korean Journal of Environmental Biology
    • /
    • v.27 no.1
    • /
    • pp.114-123
    • /
    • 2009
  • The species composition and biomass of coralline algae around three (Uljin, Wolseong and Gori) nuclear power plants on the east coast of Korea were investigated seasonally from February 1997 to October 2006. As a result, 13 species of coralline algae were found during the past ten years. Among them, Corallina pilulifera, C. officinalis, Amphiroa zonata and Pneophyllum zostericolum were common species that occurred more than 50% in frequency during the study period. Species number of coralline algae were between 10$\sim$12 species at the breakwaters near the outfalls of power plants and 8$\sim$12 species at the control area, and differences in species composition were not observed among study sites. Seasonal fluctuations of mean biomass were 0$\sim$2,530 g dry wt m$^{-2}$ and dominant species in biomass was Corallina pilulifera at all the study sites. The breakwaters of power plants generally had a greater coralline algal biomass than the control area. Biomass proportions of coralline algae at the breakwaters of power plants were also higher than those at the control area. At the Uljin sites, particularly, biomass of coralline algae showed greatest in summer and biomass proportion showed highest during the summer season. Differences in the spatio-temporal patterns of coralline algae around three nuclear power plants on the east coast of Korea were presumably due to the regional temperature variations.