• Title/Summary/Keyword: temperature estimation

Search Result 1,651, Processing Time 0.028 seconds

High Performance Adjustable-Speed Induction Motor Drive System Incorporating Sensorless Vector Controlled PWM Inverter with Auto-Tuning Machine-Operated Parameter Estimation Schemes

  • Soshin, Koji;Okamura, Yukiniko;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.99-114
    • /
    • 2003
  • This paper presents a feasible development on a highly accurate quick response adjustable speed drive implementation fur general purpose induction motor which operates on the basis of sensorless slip frequency type vector controlled sine-wave PWM inverter with an automatic tuning machine parameter estimation schemes. In the first place, the sensorless vector control theory on the three-phase voltage source-fed inverter induction motor drive system is developed in slip frequency based vector control principle. In particular, the essential procedure and considerations to measure and estimate the exact stator and rotor circuit parameters of general purpose induction motor are discussed under its operating conditions. The speed regulation characteristics of induction motor operated by the three-phase voltage-fed type current controlled PWM inverter using IGBT's is illustrated and evaluated fur machine parameter variations under the actual conditions of low frequency and high frequency operations for the load torque. In the second place, the variable speed induction motor drive system, employing sensorless vector control scheme which is based on three -phase high frequency carrier PWM inverter with automatic toning estimation schemes of the temperature -dependent and -independent machine circuit parameters, is practically implemented using DSP-based controller. Finally, the dynamic speed response performances for largely changed load torque disturbances as well as steady state speed vs. torque characteristics of this induction motor control implementation are illustrated and discussed from an experimental point of view.

Thermal Image Real-time estimation and Fire Alarm by using a CCD Camera (CCD 카메라를 이용한 열화상 실시간 추정과 화재경보)

  • Baek, Dong-Hyun
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.92-98
    • /
    • 2016
  • This study evaluated thermal image real-time estimation and fire alarm using by a CCD camera, which has been a seamless feature-point analysis method, according to the angle and position and image fusion by a vector coordinate point set-up of equal shape. The system has higher accuracy, fixing data value of temperature sensing and fire image of 0~255, and sensor output-value of 0~5,000. The operation time of a flame specimen within 500 m, 1000 m, and 1500 m from the test report specimen took 7 s, 26 s, and 62 s, respectively, and image creation was proven. A diagnosis of fire accident was designated to 3 steps: Caution/Alarm/Fire. Therefore, a series of process and the transmission of SNS were identified. A light bulb and fluorescent bulb were also tested for a false alarm test, but no false alarm occurred. The possibility that an unwanted alarm will be reduced was verified through a forecast of the fire progress or real-time estimation of a thermal image by the change in the image of a time-based flame and an analysis of the diffusion velocity.

Dynamic Calibration Coefficients Estimation with Linear Interpolation for Uncooled TEC-less IRFPA (비냉각형 TEC-less 열상 시스템에 적합한 선형보간 기반 동적 보정 계수 추정 기법)

  • Han, Sang-Hyuck;Kwak, Dong-Min
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.98-102
    • /
    • 2012
  • These days, Uncooled IR Systems are more popular in the area of defense and aerospace than before. Uncooled IR Systems are widely used as core technology for making unmanned systems and detecting enemy objects during the day and night in the distance. Recently, researches on TEC-less IRFPA have been increased to minimize the power consumption and to make a smaller system than before. For this, it needs to find adequate NUC(Non-Uniformity Correction) coefficients as FPA(Focal Plane Array) temperature changes. In this paper, we propose a new NUC coefficient estimating technique, DCCE-LI(Dynamic Calibration Coefficients Estimation with Linear Interpolation), for TEC-less IRFPA. It is based on a linear interpolation method and it can estimate NUC coefficients in real-time. So, by testing and evaluating it with some IR images, we conclude that the quality of IR images using proposed method is better than applying static coefficients.

Development of Turbine Mass Flow Rate Model for Variable Geometry Turbocharger Using Artificial Neural Network (인공신경망을 이용한 가변 기구 터보차저의 터빈 질량유량 모델링)

  • Park, Yeong-Seop;Oh, Byoung-Gul;Lee, Min-Kwang;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.8
    • /
    • pp.783-790
    • /
    • 2010
  • In this paper, we propose a turbine mass flow rate model for a variable geometry turbocharger (VGT) using an artificial neural network (ANN). The model predicts the turbine mass flow rate using the VGT vane position, engine rotational speed, exhaust manifold pressure, exhaust manifold temperature, and turbine outlet pressure. The ANN is used for the estimation of the effective flow area. In order to validate the results estimated by the proposed model, we have compared estimation results with engine experimental results. The results, in addition, represent improved estimation accuracy when compared with the performance using the turbine map.

Estimation Model of Electric Energy Consumption on Logistics Center Based on Thermodynamics Theory (열역학 이론 기반의 물류센터 전기에너지 소비량 산출 모형)

  • Cui, Lian;Kim, Young-Joo;Kim, Cheolsun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.10
    • /
    • pp.6799-6806
    • /
    • 2015
  • Electric energy consumption is always followed by the introduction of diversity scale-up and state-of-the-art equipments in logistic centers. In order to analyze the status and the characteristic of the electric energy consumption quantitatively, and also to evaluate the efficiency of the electric energy, this research aims to develop an estimation model of standard electric energy consumption for logistic centers. The proposed model applies the thermodynamics theory so as to effectively reflect the peculiarity that the temperature in the logistic center influences the electric energy consumption. And the model consists of the energy consumed by the refrigerator, which can be subdivided into the heat conducted through the wall, the heat convected by the open doors and the heat lost into the goods, and the electric consumption of the machinery equipments. The model also includes a variety of explanatory variables to support an operator of logistics centers in evaluating the efficiency of energy consumption and establishing improvement strategies for energy efficiency. Application of the model developed in this study is discussed with observed data on energy consumption of a logistics center.

Estimation of Spatial Distribution of Soil Moisture at Yongdam Dam Watershed Using Artificial Neural Networks (인공신경망을 이용한 용담댐 유역 공간 토양수분 분포도 산정)

  • Park, Jung-A;Kim, Gwang-Seob
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.3
    • /
    • pp.319-330
    • /
    • 2011
  • In this study, a soil moisture estimation model was proposed using the ground observation data of soil moisture, precipitation, surface temperature, MODIS NDVI and artificial neural networks. The model was calibrated and verified on the Yongdam dam watershed which has reliable ground soil moisture networks. The test statistics of calibration sites, Jucheon, Bugui, Sangjeon, showed that the correlation coefficients between observations and estimations are about 0.9353 and RMSE is about 1.4957%. Also that of the verification site, Cheoncheon2, showed that the correlation coefficient is about 0.8215 and RMSE is about 4.2077%. The soil moisture estimation model was applied to estimate the spatial distribution of soil moisture in the Yongdam dam watershed and results showed improved spatial soil moisture distribution since the model used satellite information of NDVI and artificial neural networks which can represent the nonlinear relationships between data well. The model should be useful to estimate wide range soil moisture information.

SOH Estimation and Feature Extraction using Principal Component Analysis based on Health Indicator for High Energy Battery Pack (건전성 지표 기반 주성분분석(PCA)을 적용한 고용량 배터리 팩의 열화 인자 추출 방법 및 SOH 진단 기법 연구)

  • Lee, Pyeong-Yeon;Kwon, Sanguk;Kang, Deokhun;Han, Seungyun;Kim, Jonghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.376-384
    • /
    • 2020
  • An energy storage system is composed of lithium-ion batteries in modern applications. Batteries are regarded as storage devices for renewable and residual energy. The failure of batteries can cause the performance reduction and explosion of battery systems. High maintenance cost is essential when dealing with the problem of battery safety. Therefore an accurate health diagnosis is required to ensure the high reliability of battery systems. A battery pack is a combination of single cells in series and parallel connections. A battery pack has to consider various factors to assess battery health. Battery health involves conventional factors and additional factors, such as cell-to-cell imbalance. For large applications, state-of-health (SOH) can be inaccurate because of the lack of factors that indicate the state of the battery pack. In this study, six characterization factors are proposed for improving the SOH estimation of battery packs. The six proposed characterization factors can be regarded as health indicators (HIs). The six HIs are applied to the principal component analysis (PCA) algorithm. To reflect information regarding capacity, voltage, and temperature, the PCA algorithm extracts new degradation factors by using the six HIs. The new degradation factors are applied to a multiple regression model. Results show the advancement and improvement of SOH estimation.

Estimation of Compressive Strength of Concrete Incorporating Fine Particle Cement Considering Blaine Fineness (분말도 변화를 고려한 미분시멘트 사용 콘크리트의 압축강도증진 해석)

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.4
    • /
    • pp.139-145
    • /
    • 2009
  • This study presents an estimation of the strength development of concrete considering the equivalent age using fine particle cement (FC), which is manufactured according to the classification process. Contents and W/B were considered as experimental parameters. The strength considering the equivalent age is gradually increased, and the deviation of the strength according to W/C is increased with decrease of W/C in accordance with the replacement of the fine particle cement. For estimating the apparent activation energy (Ea) considering setting time and blame fineness of cement, Ea of the FC based on setting time is calculated with $27.6{\sim}28.9$ KJ/mol, which is somewhat similar to that of OPC, while by applying Ea based on blame fineness, Ea is increased with increase of FC contents, and is calculated with $40{\sim}56$ KJ/mol. Good agreement is obtained by applying Ea based on setting time, while there was remarkable variation between calculated value and measured value when Ea based on blame fineness. Therefore, it is necessary to add influencing factors in existing Ea to enhance the accuracy of the estimation.

Performance Evaluation and Economic Estimation of Ground Source Heat Pump Cooling and Heating System (지열 냉난방 시스템의 성능 및 경제성 평가)

  • Lim Hyo Jae;Song Yoon Seok;Kong Hyoung Jin;Park Seong Koo
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.296-300
    • /
    • 2004
  • Performance evaluation and economic estimation were conducted on the water to water GSHP (Ground Source Heat Pump) installed in existing building. Ground heat exchanger was a closed vertical loop type and sized to be 5 boreholes and 100m depth per borehole. Operation efficiency of the system shows that, COP increased from 3.0 to 4.2 with entering water temperature in heating operation, however, COP decreased from 5.0 to 3.7 in cooling operation. Economic estimation was analyzed by LCC (Life Cycle Cost) method and it showed that GSHP could save 68% of cost compare to the conventional oil source. Thus, despite of the large amount of initial cost, GSHP has a economic advantage to the other energy sources.

Development of a Site Index Equation for Pinus koraiensis Based on Environmental Factors and Estimation of Productive Areas for Reforestation (환경요인에 의한 잣나무의 지위지수 추정식 개발과 적지 판정)

  • Shin Man-Yong;Jung Il-Bin;Koo Kyo-Sang;Won Heong-Gyu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.2
    • /
    • pp.97-106
    • /
    • 2006
  • Site index is an essential tool to estimate forest productivity. Generally, a site index equation is developed and used from the relationship between stand age and dominant tree heights. However, there is a limit to the use of the site index equation in the application of variable ages, environmental influence, and estimation of site index for the unstocked forest. Therefore, it has been attempted to develop a new site index equation based on various environmental factors including site, climate, and topographical variables. This study was conducted to develop a site index equation based on the relationship between site index and environmental factors for the species of Pinus koraiensis in Yangpyung-Gun, Gyunggi Province. The influence of climatic factors (temperature and solar irradiation ratio), topographical factors (elevation, slope, ratio of slope to valley and aspect) and soil profiles (soil depth by layer and soil consistency) on site index were evaluated by multiple regression analysis. Five environmental factors were selected in the final site index equation for Pinus koraiensis. The site index equation developed in this study was also verified by three evaluation statistics: model's estimation bias, model's precision, and mean square error of measurement. Based on the site index equation, the number of productive areas for Pinus koraiensis were estimated by applying GIS technique to digitized forest maps. In addition, the distribution of productive areas was compared with the areas of current distribution of Pinus koraiensis. It is expected that the results obtained in this study could provide valuable information about the amount and distribution of productive areas for Pinus koraiensis reforestation.