• Title/Summary/Keyword: temperature estimation

Search Result 1,651, Processing Time 0.035 seconds

Estimation of the genetic milk yield parameters of Holstein cattle under heat stress in South Korea

  • Lee, SeokHyun;Do, ChangHee;Choy, YunHo;Dang, ChangGwon;Mahboob, Alam;Cho, Kwanghyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.334-340
    • /
    • 2019
  • Objective: The objective of this study was to investigate the genetic components of daily milk yield and to re-rank bulls in South Korea by estimated breeding value (EBV) under heat stress using the temperature-humidity index (THI). Methods: This study was conducted using 125,312 monthly test-day records, collected from January 2000 to February 2017 for 19,889 Holstein cows from 647 farms in South Korea. Milk production data were collected from two agencies, the Dairy Cattle Genetic Improvement Center and the Korea Animal Improvement Association, and meteorological data were obtained from 41 regional weather stations using the Automated Surface Observing System (ASOS) installed throughout South Korea. A random regression model using the THI was applied to estimate genetic parameters of heat tolerance based on the test-day records. The model included herd-year-season, calving age, and days-in-milk as fixed effects, as well as heat tolerance as an additive genetic effect, permanent environmental effect, and direct additive and permanent environmental effect. Results: Below the THI threshold (${\leq}72$; no heat stress), the variance in heat tolerance was zero. However, the heat tolerance variance began to increase as THI exceeded the threshold. The covariance between the genetic additive effect and the heat tolerance effect was -0.33. Heritability estimates of milk yield ranged from 0.111 to 0.176 (average: 0.128). Heritability decreased slightly as THI increased, and began to increase at a THI of 79. The predicted bull EBV ranking varied with THI. Conclusion: We conclude that genetic evaluation using the THI function could be useful for selecting bulls for heat tolerance in South Korea.

Analysis of the relationship between soda-lime glass composition and viscosity calculated by Lakatos model (Lakatos 모델로 계산한 소다석회유리 점도와 조성과의 관계 분석)

  • Kang, Seung Min;Kim, Chang-sam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.6
    • /
    • pp.246-250
    • /
    • 2022
  • An estimation method of glass viscosity using Lakatos model is one of the best way to calculate the viscosity of soda-lime glass. The glass viscosity is obtained by inputting a glass composition consisting of SiO2, Al2O3, Na2O, K2O, CaO and MgO to the Lakatos model. A series of composition of glass bottles was obtained once a month for 10 months from a soda-lime glass bottle fabrication line and isokom temperatures at the viscosity of log η = 3, 6.6, 10 and 12.3 were calculated. It was found that the isokom temperature at log η = 3 and log η = 6.6 was closely related to the value of (Si+Al)/O and 1/Na, respectively.

Changes of Physical and Chemical Properties for Making Raw Materials and Reproductions According to Manufacturing Stages in Traditional Korean White Porcelain

  • Kim, Du Hyeon;Jeong, Ji Youn;Oh, Eun Jeong;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.38 no.4
    • /
    • pp.301-313
    • /
    • 2022
  • We made a Korean white porcelain or Joseon Baekja jar and based on the raw materials used and reproductions of each stage, we aimed to compare and analyze the physicochemical changes of the raw materials such as clay at each manufacturing stage, as well as identify the characteristics and correlations. Although the basic main components of clay and glaze material are similar, their texture becomes denser in the process of bisque firing pottery (Chobeol-pyeon) and glaze firing pottery (Jaebeol-pyeon), and we confirmed that in addition to the tendency of increasing vitrification, low-temperature minerals such as mica and illite gradually disappeared, while high-temperature minerals such as cristobalite were newly created. This phenomenon has also been verified by the rapid decrease in absorption rate while the change in specific gravity was small. In addition, the color was greatly affected by the firing atmosphere, and the yellow-red chromaticity of the raw materials was higher during bisque firing but showed a rapidly decreasing characteristic during glaze firing. The value of magnetic susceptibility, which is related to iron (Fe) component, showed a tendency to decrease in glaze firing pottery. CT images were confirmed as a method that can indirectly estimate the change in the material properties of the object step-by-step for the entire object. In conclusion, the study of manufacturing stages of reproduction can provide basic data for scientific research on the estimation of porcelain and pottery making technology and changes in raw materials.

A Study on Machine Learning-Based Estimation of Roadkill Incidents and Exploration of Influencing Factors (기계학습 기반의 로드킬 발생 예측과 영향 요인 탐색에 대한 연구)

  • Sojin Heo;Jeeyoung Kim
    • Journal of Environmental Impact Assessment
    • /
    • v.33 no.2
    • /
    • pp.74-83
    • /
    • 2024
  • This study aims to estimate roadkill occurrences and investigate influential factors in Chungcheongnam-do, contributing to the establishment of roadkill prevention measures. By comprehensively considering weather, road, and environmental information, machine learning was utilized to estimate roadkill incidents and analyze the importance of each variable, deriving primary influencing factors. The Gradient Boosting Machine (GBM) exhibited the best performance, achieving an accuracy of 92.0%, a recall of 84.6%, an F1-score of 89.2%, and an AUC of 0.907. The key factors affecting roadkill included average local atmospheric pressure (hPa), average ground temperature (℃), month, average dew point temperature (℃), presence of median barriers, and average wind speed (m/s). These findings are anticipated to contribute to roadkill prevention strategies and enhance traffic safety, playing a crucial role in maintaining a balance between ecosystems and road development.

A Study on the Accelerated Life Test for the Estimation of Licorice Durability in Cosmetics (화장품 중 유용성감초추출물의 유통기한 예측을 위한 가속수명 시험연구)

  • Lee, So-Mi;Joo, Kyeong-Mi;Park, Jong-Eun;Jeong, Hye-Jin;Chang, Ih-Seop
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.33 no.3
    • /
    • pp.197-201
    • /
    • 2007
  • Oil soluble licorice extract(licorice extract) is an officially approved cosmetic component as a whitening ingredient in Korea. The durability of licorice, during which the whitening effect can be maintained in optimum condition, must be accurately defined. Since the cosmetics durability under real condition is relatively longer than its development time. It is needed to predict the real durability interval from the experimental measurement under simulated operating conditions. We analyzed the relationship between the licorice lifetime and the high temperature condition by using Arrhenius equation. We have established the constant stress test with temperature of $50^{\circ}C$, $55^{\circ}C$, and $60^{\circ}C$ condition, within which no formulation change of licorice products is expected for the accelerated stress test. In this paper, the lifetime of licorice in cosmetics was defined as time period for its 10% contents reduction. We observed that the lifetime of licorice is 580 h at $50^{\circ}C$, 319 h at $55^{\circ}C$ and 166 h at $60^{\circ}C$. Using the above experimental data, we obtained the equation for the relationship between the licorice lifetime and temperature as follows; log(lifetime)=-35.0243 + 1.15322$\times$(11604.83/temperature). From this equation, the lifetime of licorice at $25^{\circ}C$ can be estimated as 26 months. The estimated result was verified by measuring full lifetime of licorice. In fact, there was no significant difference between the estimated lifetime and real measurement within 95 % significance level. This study can be applied to other useful cosmetic components for the fast estimation of the exact durability.

Development of a deep neural network model to estimate solar radiation using temperature and precipitation (온도와 강수를 이용하여 일별 일사량을 추정하기 위한 심층 신경망 모델 개발)

  • Kang, DaeGyoon;Hyun, Shinwoo;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.2
    • /
    • pp.85-96
    • /
    • 2019
  • Solar radiation is an important variable for estimation of energy balance and water cycle in natural and agricultural ecosystems. A deep neural network (DNN) model has been developed in order to estimate the daily global solar radiation. Temperature and precipitation, which would have wider availability from weather stations than other variables such as sunshine duration, were used as inputs to the DNN model. Five-fold cross-validation was applied to train and test the DNN models. Meteorological data at 15 weather stations were collected for a long term period, e.g., > 30 years in Korea. The DNN model obtained from the cross-validation had relatively small value of RMSE ($3.75MJ\;m^{-2}\;d^{-1}$) for estimates of the daily solar radiation at the weather station in Suwon. The DNN model explained about 68% of variation in observed solar radiation at the Suwon weather station. It was found that the measurements of solar radiation in 1985 and 1998 were considerably low for a small period of time compared with sunshine duration. This suggested that assessment of the quality for the observation data for solar radiation would be needed in further studies. When data for those years were excluded from the data analysis, the DNN model had slightly greater degree of agreement statistics. For example, the values of $R^2$ and RMSE were 0.72 and $3.55MJ\;m^{-2}\;d^{-1}$, respectively. Our results indicate that a DNN would be useful for the development a solar radiation estimation model using temperature and precipitation, which are usually available for downscaled scenario data for future climate conditions. Thus, such a DNN model would be useful for the impact assessment of climate change on crop production where solar radiation is used as a required input variable to a crop model.

Prediction of Post-Deformation for Plastic Component Considering Residual Stress and Viscoelasticity (판류응력 및 점탄성을 고려한 플라스틱 부품의 후면형 예측)

  • Moon, H.I.;Kim, H.Y.;Choi, C.W.;Jeong, K.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.341-344
    • /
    • 2008
  • Plastics is commonly used in consumer electronics because of it is high strength per unit mass and good productivity. But. using, transporting, and keeping of plastic component was happened post-deformation. As time goes by and temperature is changed, the post-deformation causes the problems of exterior design and performance. But, it is difficult to estimate the post-deformation by only thermal deformation analysis. Also, the estimation technique of the pest-deformation must be easily applied to product development and it should be reliable because development time of product is limited. In the paper. the process to predict the post deformation under cyclic thermal loadings was suggested. The process was applied to the real panel, and the deformation predicted by the analysis was compared with that of real test, which showed the possibility of applying the suggested process to predict the post deformation of plastic product under thermal loadings.

  • PDF

Effect of Pressure on Interfacial Heat Transfer Coefficient in the Squeeze Casting Process (용탕단조시 가압력에 따른 계면열전달계수의 변화)

  • Kim, Jin-Soo;Ahn, Jae-Young;Han, Yo-Sub;Lee, Ho-In;Hong, Chun-Pyo
    • Journal of Korea Foundry Society
    • /
    • v.14 no.3
    • /
    • pp.248-257
    • /
    • 1994
  • Research in heat transfer and solidification commonly involves experimentation and mathematical modeling with associated numerical analysis and computation. Inverse problems in heat transfer are part of this paradigm. During the solidification of metal casting, an interfacial heat transfer resistance exists at the boundary between the casting and the mold, and this heat transfer resistance usually varies with time. In the case of the squeeze casting the contact heat transfer resistance is decreased by pressure and ideal contact is almost accomplished. In the present work, heat transfer coefficient, which is inverse value of the heat transfer resistance, was used for convenience. A numerical technique, Non-Linear Estimation has been adopted for calculation of the casting/mold interfacial heat transfer coefficient during the squeeze casting process. In this method, the measured temperature data from experiment were used. The computational results were applied to the analysis of heat transfer and solidification.

  • PDF

Estimation of Machinability Turning Process for Al7075-T6 by Cryogenic Heat Treatment (극저온 열처리된 Al7075-T6의 선삭특성 분석)

  • Lim, Hak Jin;Oh, Jeong Kyu;Kim, Pyeong Ho;Lee, Jong Hwan;Kim, Jeong Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.5
    • /
    • pp.865-870
    • /
    • 2013
  • In recent years, aluminum processing has been increasing in the aerospace, vehicle, airplane industries etc., because aluminum has abundant resources and has a high specific strength. Aluminum alloys have a high coefficient of thermal expansion therefore, it is necessary to consider the temperature problem in the cutting process. The objective of this research is to investigate the machinability of a hardened aluminum alloy Al7075-T6 by using cryogenic heat treatment. The machining test is conducted by comparing the cutting force and surface roughness, corresponding to various cutting conditions of depth of cut, cutting speed, and feed rate, with those of Al7075-T0.

Analysis of Building Energy using Meteorological Numerical Simulation Data over Busan Metropolitan Areas (부산지역에서의 기상 수치모의 자료를 이용한 건축물 에너지 분석)

  • Lee, Kwi-Ok;Kim, Min-Jun;Lee, Kang-Yeol;Kang, Dong-Bae;Park, Chang-Hyoun;Lee, Hwa-Woon;Jung, Woo-Sik
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.503-510
    • /
    • 2014
  • To estimate the benefit of high-resolution meteorological data for building energy estimation, a building energy analysis has been conducted over Busan metropolitan areas. The heating and cooling load has been calculated at seven observational sites by using temperature, wind and relative humidity data provided by WRF model combined with the inner building data produced by American Society of Heating Refrigeration and Air-conditioning Engineers (ASHRAE). The building energy shows differences 2-3% in winter and 10-30% in summer depending on locations. This result implicates that high spatiotemporal resolution of meteorological model data is significantly important for building energy analysis.