• Title/Summary/Keyword: temperature distribution control

Search Result 668, Processing Time 0.027 seconds

A Study on Improved Heating Performance of an Apartment Housing Unit (공동주택 세대별 난방 성능 개선 연구)

  • Seo, Jeong-Ah;Shin, Younggy;Kim, Yong-Ki;Lee, Tae-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.28 no.2
    • /
    • pp.69-74
    • /
    • 2016
  • Most hot water heating valves for apartments are constant-flow types, which limit the flow rate through an individual household for even distribution of heating water to other households. The constant-flow type is implemented by an on-off control. As a result, heating water is supplied intermittently and hence, indoor air temperature also fluctuates. Returning water temperature is also high, which reduces energy efficiency. To implement continuous feedback control, the indoor temperature dynamics was simulated to fit a measured temperature history by a state-of-the-art physical model. From the model, it was found that the most important disturbance is outdoor temperature and its effect on indoor temperature lasts about an hour. To cope with the slow response and the significant disturbance, a prediction control with proportional feedback is proposed. The control was found to be successful in implementing continuous heating water flow and improved indoor temperature control.

Weld pool size estimation of GMAW using IR temperature sensor (GMA 용접공정에서 적외선 온도 센서를 이용한 용융지 크기 예측)

  • 김병만;김영선;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1404-1407
    • /
    • 1996
  • A quality monitoring system in butt welding process is proposed to estimate weld pool sizes. The geometrical parameters of the weld pool such as the top bead width and the penetration depth plus half back width are utilized to prove the integrity of the weld quality. The monitoring variables used are the surface temperatures measured at three points on the top surface of the weldment. The temperature profile is assumed that it has a gaussian distribution in vertical direction of torch movement and verify this assumption through temperature analysis. A neural network estimator is designed to estimate weld pool size from temperature informations. The experimental results show that the proposed neural network estimator which used gaussian distribution as temperature information can estimate the weld pool sizes accurately than used three point temperatures as temperature information. Considering the change of gap size in butt welding, the experiment were performed on various gap size.

  • PDF

Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions

  • Madani, Hamid;Hosseini, Hadi;Shokravi, Maryam
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.889-913
    • /
    • 2016
  • Vibration analysis of embedded functionally graded (FG)-carbon nanotubes (CNT)-reinforced piezoelectric cylindrical shell subjected to uniform and non-uniform temperature distributions are presented. The structure is subjected to an applied voltage in thickness direction which operates in control of vibration behavior of system. The CNT reinforcement is either uniformly distributed or functionally graded (FG) along the thickness direction indicated with FGV, FGO and FGX. Effective properties of nano-composite structure are estimated through Mixture low. The surrounding elastic foundation is simulated with spring and shear constants. The material properties of shell and elastic medium constants are assumed temperature-dependent. The motion equations are derived using Hamilton's principle applying first order shear deformation theory (FSDT). Based on differential cubature (DC) method, the frequency of nano-composite structure is obtained for different boundary conditions. A detailed parametric study is conducted to elucidate the influences of external applied voltage, elastic medium type, temperature distribution type, boundary conditions, volume percent and distribution type of CNT are shown on the frequency of system. In addition, the mode shapes of shell for the first and second modes are presented for different boundary conditions. Numerical results indicate that applying negative voltage yields to higher frequency. In addition, FGX distribution of CNT is better than other considered cases.

1-D Modeling of Heater Surface Temperature Distribution in EHC-based Urea-SCR System (EHC 기반 Urea-SCR 시스템 히터 표면온도 분포의 1-D 모델링)

  • Park, Sunhong;Son, Jihyun;Moon, Seoksu;Oh, Kwangchul;Jang, Sungwook;Park, Sungsuh
    • Journal of ILASS-Korea
    • /
    • v.27 no.1
    • /
    • pp.11-17
    • /
    • 2022
  • In upcoming Post Stage-V and Tier 5 regulations of construction machineries, nitrogen oxide (NOx) emissions are strictly limited in cold start conditions. In response to this, a method of improving NOx conversion efficiency has been applied by installing an electric heating catalyst (EHC) in front of conventional urea-SCR systems so that the evaporation and thermal decomposition of urea-water solution can be promoted in cold start conditions. In this strategy, the evaporation and thermal decomposition of urea-water solution and corresponding NOx conversion efficiency are governed by temperature conditions inside the EHC. Therefore, characterizing the temperature distribution in the EHC under various operating conditions is crucial for the optimized operation and control of the EHC in Urea-SCR systems. In this study, a 1-D modeling analysis was performed to predict the heater surface temperature distribution in EHC under various operating conditions. The reliability of prediction results was verified by comparing them with measurement results obtained using an infrared (IR) camera. Based on 1-D analysis results, the effects of various EHC operation parameters on the heater surface temperature distribution were analyzed and discussed.

A Study on the Development of a Multi-Heat Supply Control Algorithm in a District Heating Apartment Building in Accordance with the Variation of Outdoor Air Temperature (외기온도 변화에 따른 지역난방 공동주택 다중 열공급제어 알고리즘 개발에 관한 해석적 연구)

  • Byun, Jae-Ki;Yun, Sung-Ho;Nam, Ki-Hoon;Choi, Young-Don;Sin, Jong-Geun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.11
    • /
    • pp.585-594
    • /
    • 2013
  • In this study, we developed a heat supply control algorithm that minimizes the heat loss in the heat distribution pipelines used for supplying heat energy to shared group housing. Controlling the temperature and flow rate of the hot water supplied to the heat exchanger for shared group housing enables us to develop a heat supply control technique that meets the heating load required by each household in a shared apartment building in accordance with changes in the outdoor air temperature, and that minimizes the heat loss occurring in the heat distribution pipeline. A one-year study in 2008 on a 1,473-household D-apartment building in Hwaseong, Gyeonggi-do, South Korea, compared the heat capacity used by each household, as well as the heat capacity supplied to the heat exchanger room of the apartment housing building, to calculate the amount of heat loss in the heat distribution pipeline. The results confirmed that 24.1% of the heat supplied was lost in the piping.

Estimation of Hardened Layer Dimensions Using Multi-Point Temperature Monitoring in Laser Surface Hardening Processes (레이저 표면 경화 공정에서 다점 온도 모니터링을 통한 경화층 크기 예측)

  • 우현구
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1048-1054
    • /
    • 2003
  • In laser surface hardening processes, the geometrical parameters such as the depth and the width of a hardened layer can be utilized to assess the hardened layer quality. However, accurate monitoring of the geometrical parameters for on-line process control as well as for on-line quality evaluation is very difficult because the hardened layer is formed beneath a material surface and is not visible. Therefore, temperature monitoring of a point of specimen surface has most frequently been used as a process monitoring method. But, a hardened layer depends on the temperature distribution and the thermal history of a specimen during laser surface hardening processing. So, this paper describes the estimation results of the geometric parameters using multi-point surface temperature monitoring. A series of hardening experiments were performed to find the relationships between the geometric parameters and the measured temperature. Estimation results using a neural network show the enhanced effectiveness of multi-point surface temperature monitoring compared to one-point monitoring.

An Theoretical Investigation on the Minimization of Birefringence Distribution in Optical Disk Substrate (광디스크 기판 성형시 발생하는 복굴절의 최소화를 위한 이론적 연구)

  • 김종성;강신일
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.103-111
    • /
    • 2000
  • It is necessary to improve mechanical and optical properties in the optical disk substrates as the information storage density using short wavelength laser are being developed. The birefringence distribution is regarded as one of the most important optical properties for optical disk. In the present study, the birefringence distrubution is calculated using the Leonov model for viscoelastic constitutive equations and Cross/WLF model for viscosity approximation. The effects of processing conditions upon the development of birefringence discosity approximation. The effects of processing conditions upon the development of birefringence distribution in the optical disk were examined theoretically. It was found that the values of the birefringence distributions were very sensitive to the mold wall temperature history which minimizes the birefringence distribution. The analytical results showed the possibility of improving mechanical and optical properties in the optical disk substrates by active control of the mold wall temperature history.

  • PDF

Distribution of clothing microclimate for making comfortable military uniform (쾌적한 군복 설계를 위한 의복기후 분포)

  • Kim, Yang-Won
    • Journal of National Security and Military Science
    • /
    • s.1
    • /
    • pp.231-247
    • /
    • 2003
  • To get the basic data for making comfortable military uniforms and to examine the distribution of clothing microclimate, seasonal fluctuations of skin temperature, subjective sensation, and clothing microclimate were measured from 10 males. The subject were questioned on thermal comfort in experiment. Clothing microclimate temperature at breast, skin temperature at four sites (breast, upper arm, thigh, leg), deep body temperature at eardrum( tympanic temperature), and subjective sensation were measured for an hour in the controlled climatic chamber. The subjects felt comfortable when skin temperature were recorded $34.43^{\circ}C$ at breast, $33.53^{\circ}C$ at upper arm, $32.9^{\circ}C$ at thigh, and 32.50 at leg. Then mean skin temperature was $33.55\pm$$0.63^{\circ}C$. Clothing microclimate temperature ranged from 31.2 to $33.8^{\circ}C$, and clothing microclimate humidity ranged from 49.80~52.41%. In the comparison of these results with the microclimate of military uniforms, it needs more insulation in clothing for military uniforms. It also says that military uniforms should be made of the textiles which can control humidity.

  • PDF

Nondestructive Detection of Defect in a Pipe Using Thermography

  • Choi, Hee-Seok;Joung, Ok-Jin;Kim, Young-Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1413-1416
    • /
    • 2005
  • An infrared temperature sensor module developed for the detection of defects in a plate was modified to use in a cylinder. A set of optical fiber leads and a mechanism maintaining sensor-object distance constant were utilized for the modification of the IR sensor module. The detection performance was experimentally investigated, and the measured temperature was also compared with computed temperature distribution. The experimental outcome indicates that the detection of a simulated defect is readily available. The temperature distribution is better for defect detection than that with the previous device. In addition, the measured distribution is comparable to the calculated one using a heat conduction equation. The developed device of defect detection is suitable to be utilized in chemical processes where most of vessels and piping systems are in the shape of a cylinder.

  • PDF