• Title/Summary/Keyword: temperature decreasing

Search Result 2,024, Processing Time 0.032 seconds

Performance Analysis of R404A Refrigeration System with Internal Heat Exchanger Using R744 as a Secondary Refrigerant (R744를 2차 냉매로 사용하는 내부열교환기 부착 R404A 냉동시스템의 성능 분석)

  • Oh, Hoo-Kyu;Son, Chang-Hyo;Yi, Wen-Bin;Jeon, Min-Ju
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.10
    • /
    • pp.548-554
    • /
    • 2013
  • A thermodynamic analysis of the R404A refrigeration system with an internal heat exchanger using R744 as a secondary refrigerant is presented in this paper to optimize the design for operating parameters of the system. The main results are summarized as follows: The COP increases with increasing subcooling and superheating degree of R404A, internal heat exchanger and compression efficiency of the R404A cycle and evaporating temperature of the R744 cycle and decreasing temperature difference of the cascade heat exchanger and condensing temperature of the R404A cycle. The mass flow ratio decreases with increasing evaporating temperature of the R744 cycle and internal heat exchanger efficiency of the R404A cycle and decreasing subcooling and superheating degree of the R744 cycle, temperature difference of the cascade heat exchanger and condensing temperature of the R404A cycle.

Fatigue Crack Growth Behavior of Membrane Material for LNG Storage Tank at Low Temperatures (저온하에서 LNG저장탱크용 멤브레인재(STS 304강)의 피로균열진전거동)

  • 김철수
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.23-28
    • /
    • 2000
  • The fatigue crack growth behavior of the cold-rolled STS 304 steel developed for membrane material of LNG storage tank was examined experimentally at 293K, 153K and 111K. The fatigue crack growth rate(do/dN) tends to increase as the stress ratio (R) increases over the testing temperature when compared at the same stress intensity factor range($\Delta$K). The effect of R on do/dN is more explicit at low temperatures than at room temperature. The resistance of fatigue crack growth at low temperatures is higher compared with that at room temperature which is attributed to the extent of strain-induced martensitic transformation at the crack tip. The temperature dependence of fatigue crack growth resistance is gradually vanished with an increase in $\Delta$K which correlates with a decreasing fracture toughness with decreasing temperature. Fractographic examinations reveal that the differences of the fatigue crack growth characteristics between room and low temperature are mainly explained by the crack closure and the strengthening due to the martensitic transformation.

  • PDF

Effects of Strain Rate and Temperature on Tensile Properties of High Mn Twinning Induced Plasticity Steels (고망간 Twinning Induced Plasticity 강의 인장 특성에 미치는 변형률 속도와 온도의 영향)

  • Lee, Junghoon;Lee, Sunghak;Shin, Sang Yong
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.643-651
    • /
    • 2017
  • Four types of high Mn TWIP(Twinning Induced Plasticity) steels were fabricated by varying the Mn and Al content, and the tensile properties were measured at various strain rates and temperatures. An examination of the tensile properties at room temperature revealed an increase in strength with increasing strain rate because mobile dislocations interacted rapidly with the dislocations in localized regions, whereas elongation and the number of serrations decreased. The strength decreased with increasing temperature, whereas the elongation increased. A martensitic transformation occurred in the 18Mn, 22Mn and 18Mn1.6Al steels tested at $-196^{\circ}C$ due to a decrease in the stacking fault energies with decreasing temperature. An examination of the tensile properties at $-196^{\circ}C$ showed that the strength of the non-Al added high Mn TWIP steels was high, whereas the elongation was low because of the martensitic transformation and brittle fracture mode. Although a martensitic transformation did not occur in the 18Mn1.9Al steel, the strength increased with decreasing temperature because many twins formed in the early stages of the tensile test and interacted rapidly with the dislocations.

A Study on the Internal Temperature Reduction of PKG-A Water-jet-room by Substituting Heat Insulation Materials (단열재 개선을 통한 PKG-A Water Jet Room 온도저감 연구)

  • Jung, Young In;Choi, Sang Min
    • Journal of Korean Society for Quality Management
    • /
    • v.47 no.3
    • /
    • pp.425-435
    • /
    • 2019
  • Purpose: The purpose of this study was to resolve the Naval ship's Local Operation Panel(LOP) malfunction problems which caused by overheating in summer season and dispatching to equatorial regions. Methods: Instead of using dual type heat insulation materials(consist with ceramic wool and glass wool), aerogel heat insulation materials were used for decreasing heat emissions from gas-turbine heat waste steam pipes passing water-jet- room. Experiment and Computational analysis of heat flow were conducted to analyze the internal room temperature changes. Results: The results of this study are as follows; The aerogel heat insulation materials suppress heat emission more efficiently than dual type insulation materials. The cold surface temperature of insulation was far more decreased and internal room, LOP surface temperature also showed significant results too. Conclusion: The substituted heat insulation materials appeared remarkable performance in decreasing room temperature that it could be used for suppressing the LOP overheatings and malfunctions.

Impact and Rebounding Properties of Shoe Midsole with Temperature (온도변화에 따른 신발 중창용 발포체의 충격 및 반발특성)

  • Park, Cha-Cheol
    • Elastomers and Composites
    • /
    • v.39 no.4
    • /
    • pp.274-280
    • /
    • 2004
  • Sorage modulus(G'), Impact and rebounding properties of polyurethane(PU), phylon(PH) and injection phylon(IP) foams were studied. The storage modulus of PU foam was dramatically increased with decreasing temperature. But the storage modulus(G') of IP and PH foams were not affected by temperature. The Impact force of PU foams was increased with decreasing temperature. But in the cases of IP and PH foams, the impact forces were not changed with temperature below $20^{\circ}C$. Impact farces of IP and PH foams were increased with the temperature above $20^{\circ}C$, but that of PU foam was not changed. Rebounding resilience of PU foam was lower than those of IP and PH foams from $-20^{\circ}C$ to $40^{\circ}C$.

Effects of Portland Cement Characters and Working Temperature on the Physical Properties of Cement Mortars (시멘트의 특성과 사용 온도가 모르터의 물성에 미치는 영향)

  • 김원기;김창은
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.5
    • /
    • pp.410-417
    • /
    • 2000
  • In this study the effects of specifics surface area of cement, addition amount of gypsum and substitution ratio of gypsum anhydrite ont he physical properties of cement mortars were investigated by measruements of setting time, flow, compressive strength and hydration heat evolution rate. The results showed that fluidity of mortars was increased by 40 wt.% of maximum flow change with the decreasing specific surface area of cement from 3,500$\textrm{cm}^2$/g to 3,300${\pm}$50$\textrm{cm}^2$/g and affected by the relationship between the cement and balancing between the chemical activityof cement and solubility of calcium sulfate are desirable to prevent the fluidity of concrete from decreasing by high temperature in summer season.

  • PDF

Effects of Formaldehyde to Urea Mole Ratio on Thermomechanical Curing of Urea-Formaldehyde Resin Adhesives

  • Park, Byung-Dae;Kim, Jae-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.76-86
    • /
    • 2007
  • This study was conducted to investigate the effects of formaldehyde to urea (F/U) mole ratio on thermomechanical curing of UF resin adhesives with different F/U mole ratios. Thermomechanical curing of these UF resin adhesives was characterized using parameters of dynamic mechanical analysis (DMA) such as the gel temperature, maximum storage modulus, and peak temperatures of storage and loss modulus. As the F/U mole ratio decreased, the gel temperature of UF resin adhesives increased. The maximum storage modulus as an indicator of the rigidity of UF resin adhesives decreased with decreasing F/U mole ratio. The peak temperature of tan $\delta$ increased with decreasing F/U mole ratio, indicating that the vitrification occurred faster for high F/U mole ratio of UF resin adhesives than for the one of lower F/U mole ratio. These results partially explained the reason why UF resin adhesives with lower F/U mole ratio resulted in relatively poor adhesion performance when they were applied.

Effect of Subzero Treatment on the Mechanical Properties and Damping Capacity of Austempered Ductile Cast Ironn (오스템퍼드 구상흑연주철의 기계적 성질 및 감쇠능에 미치는 서브제로처리의 영향)

  • Lee, K.H.;Kwon, M.K.;Kim, C.G.;Kang, C.Y.
    • Journal of Power System Engineering
    • /
    • v.11 no.4
    • /
    • pp.86-91
    • /
    • 2007
  • This study was investigated to know the effect of subzero treatment in austempered ductile cast iron. Retained austenite transformed to martensite by subzero treatment. With decreasing subzero treatment temperature, more volume fraction of retained austenite transformed to martensite and transformed to martensite above 30% by subzero treatment temperature at $-196^{\circ}C$. With decreasing subzero treatment temperature, the value of strength and hardness increased but the value of elongation and impact value decreased. In case of subzero treatment at $-196^{\circ}C$, hardness value increased about 18% and impact value decreased by above 20%. We could find that subzero treated specimens had a little of effect on the tensile properties but had very much effect on the hardness and value of the impact.

  • PDF

Photophysical Properties of Khellin-Dimethylfumarate C$_4$-Cyclomonoadduct

  • Shim, Sang-Chul;Kang, Ho-Kwon
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.6
    • /
    • pp.458-461
    • /
    • 1986
  • The fluorescence intensity of khellin-dimethylfumarate C$_4$-cycloadduct (KDF) is very sensitive to temperature and to the nature of solvents, especially hydrogen-bonding ability. The fluorescence quantum yields of KDF in ethanol and isopentane at 77K are 0.73 and 0.54, respectively, both of which are much larger than the room temperature values. The phosphorescence lifetime is very long and decreases with decreasing the solvent polarity. The phosphorescence and fluorescence quantum yield ratio is very small and decreases with decreasing solvent polarity. The solvent relaxation plays an important role in the excited states of KDF. The internal conversion is a major decay process of the excited singlet state of KDF in all the solvents used at room temperature.

Low Temperature Properties of Exchange-biased Magnetic Tunnel Junction

  • Lee, K. I.;J. G. Ha;S. Y. Bae;K. H. Shin
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.325-326
    • /
    • 2000
  • Low temperature diagnosis was performed as a probe for the integrity of MTJ(Magnetic tunnel junction) process which is optimised for the given plasma oxidation condition. TMR ratio increased slowly with decreasing temperature than that expected from spin wave exitation theory〔1〕. Junction resistance (RJ) does not follow T$\^$-$\frac{1}{2}$/ law below 200 K, indicating another conduction path besides spin polarized tunneling is involved at low temperature. Temperature dependence of conductance dip and bias dependence of TMR with temperature are discussed, from which the quality of tunnel barrier and its formation process can be inferred.

  • PDF