• 제목/요약/키워드: temperature control system

검색결과 3,223건 처리시간 0.034초

밸브제어기용 전력선 통신 모뎀을 이용한 에너지 절약형 난방제어 시스템 (Energy Saving Heating Control System Using the Power Line Communication Modem for a Valve Controller)

  • 김명호;이태봉
    • 전기학회논문지P
    • /
    • 제55권3호
    • /
    • pp.123-127
    • /
    • 2006
  • In a heating control system, the indoor temperature controller transfers temperature signals inputted from the temperature sensor and the user to the valve controller. The valve controller receives these signals then the valve controller controls the valve driving motor on two position control and controls the indoor temperature. When setting up a new valve driving motor from a long distance it is necessary to set up a new valve controller. But occasionary, due to construction, It is impossible to wire between the existing valve controller and the new valve controller. In this situation, the new and existing valve controllers can communicate via power line communication. In this paper it is proposed heating control system controls on two position control via power line communication.

LonWorks를 이용한 전력선 통신 난방제어 시스템 (Power Line Communication Heating Control System by LonWorks)

  • 김명호;김선부
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.1150-1155
    • /
    • 2006
  • In a heating control system, the indoor temperature controller transfers temperature signals inputed from the temperature sensor and the user to the valve controller. The valve controller recieves these signals then the valve controller controls the valve driving motor on two position control and controls the indoor temperature. When setting up a new valve driving motor from a long distance it is necessary to set up a new valve controller. But occasionary, due to construction, it is impossible to wire between the existing valve controller and the new valve controller. In this situation, the new and existing valve controllers can communicate via power line communication. In this paper it is proposed heating control system controls on two position control via power line communication.

  • PDF

오일쿨러의 고정밀 온도 제어를 위한 PI 및 피드포워드 제어기 설계 (Design of PI and Feedforward Controller for Precise Temperature Control of Oil Cooler System)

  • 변종영;정석권
    • 동력기계공학회지
    • /
    • 제14권6호
    • /
    • pp.89-95
    • /
    • 2010
  • This paper deals with design method of proportional-integral(PI) and feedforward controller for obtaining precise temperature and high energy efficiency of oil cooler system in machine tools. The compressor's speed and opening angle of an electronic expansion valve are controlled to keep reference value of temperature at oil outlet and superheat of an evaporator. Especially, the feedforward controller is added to suppress temperature fluctuation under abrupt disturbances. Through some experiments, the suggested method can control the target temperature within steady state error of ${\pm}0.l^{\circ}C$ and maximum overshoot $0.2^{\circ}C$ under abrupt disturbances.

히트펌프 냉·난방 시스템의 온도 자동제어에 관한 연구 (A Study for Automatic Temperature Control of the Heating-Cooling System with Heat Pump)

  • 구창대
    • 한국산업융합학회 논문집
    • /
    • 제14권4호
    • /
    • pp.143-149
    • /
    • 2011
  • The experiment has been investigated the room temperature change under adjusting 4-way valve which was installed for cooling and heating switch. Beside, the temperature of heat pump was controlled automatically for autonomously adjusting temperature and maintaining a constant room temperature. As results, Inlet & outlet temperature differences of compressor are $95^{\circ}C$ in cooling condition and $57^{\circ}C$ in heating condition. Therefore, Compression efficiency of cooling effect is higher than heating effect. In addition, Heat exchange effect of Cooling system condition is higher than heating system. This results can be used for studying about automatic temperature control of cooling and heating system with heat pump and 4way valve.

발전소 과열증기 온도제어 시스템의 국산 DCS 적용에 관한 연구 (Study on application of domestic development DCS for S/H temp in the power plant)

  • 박익수;김은기;박성혁;이기원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.292-296
    • /
    • 1992
  • There are lots of disturbance in the super heater temperature control system of power plant boiler as follows. 1.Burner light off. 2.Excess Air. 3.Burner tilt. 4.G.R fan flow. Temperature control system of super heater in the power plant has delay time about 5 min. So it is difficult to control the super heater temperature in the power plant. This paper show us the application of domestic development DCS to control the super heater temperature in seoul #5 thermal power plant unit.

  • PDF

화력발전소 관류보일러의 과열기 온도제어에 관한 연구 (A Study of Superheater Temperature Control on an Once Through Boiler in Thermal Power Plant)

  • 이주현;정태원
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.2022-2027
    • /
    • 2009
  • An supercritical once through boiler system has been used in the korea standard-type thermal power plant. It is critical in boiler operation that superheater temperature should be controlled within the specified limit. In this paper, control logic scheme is suggested for superheater temperature in once through boiler. Finally the simulation result using process model based simulator shows the validity of suggested control logic.

적응최적시간제어를 사용한 전기로의 온도제어 (Temperature Control of Electric Furnaces using Adaptive Time Optimal Control)

  • 전봉근;송창섭;금영탁
    • 한국정밀공학회지
    • /
    • 제26권5호
    • /
    • pp.120-127
    • /
    • 2009
  • An electric furnace, inside which desired temperatures are kept constant by generating heat, is known to be a difficult system to control and model exactly because system parameters and response delay time vary as the temperature and position are changed. In this study the heating system of ceramic drying furnaces with time-varying parameters is mathematically modeled as a second order system and control parameters are estimated by using a RIV (Recursive Instrumental-Variable) method. A modified bang-bang control with magnitude tuning is proposed in the time optimal temperature control of ceramic drying electric furnaces and its performance is experimentally verified. It is proven that temperature tracking of adaptive time optimal control using a second order model is more stable than the GPCEW (Generalized Predictive Control with Exponential Weight) and rapidly settles down by pre-estimation of the system parameters.

온도측정 기반의 최적전압을 이용한 PV 시스템의 TMOV MPPT 제어 (TMOV MPPT Control of PV System with Temperature Measurement based Optimal Voltage)

  • 고재섭;정동화
    • 조명전기설비학회논문지
    • /
    • 제26권11호
    • /
    • pp.30-39
    • /
    • 2012
  • The characteristics of I-V and P-V of solar cell nonlinearly changes according to irradiation, temperature and load. Therefore, to use efficiently PV system, operating point must be always operating at maximum power point. Also, PV system is semiconductor, so it generates loss by temperature. But because of conventional MPPT methods are not considering temperature, it has problem which decrease efficiency. This paper proposes temperature measurement based optimal voltage(TMOV) MPPT algorithm using temperature measurement based optimal voltage. It analyzes characteristics of solar cell according to irradiation and temperature and conventional MPPT methods. The TMOV control algorithm proposed in this paper is compared and analyzed conventional MPPT methods. The validity of this paper proves using this result.

온도센서를 사용하지 않는 MEMS 마이크로히터 온도제어시스템 (A Sensorless and Versatile Temperature-Control System for MEMS Microheaters)

  • Bae, Byung-Hoon;Yeon, Jung-Hoon;Flachsbart Bruce R.;Shannon Mark A.
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권11호
    • /
    • pp.544-547
    • /
    • 2006
  • In this paper, we present a temperature-controlled system for MEMS electrical resistance heaters without a temperature sensor. To rapidly control the heater temperature, the microheater system developed consists of a power supply, power amplifier, digital ${\underline{P}}roportional-{\underline{I}}ntegral-{\underline{D}}ifferential$ (PID) controller, and a quarter bridge circuit with the microheater and three resistors are nominally balanced. The microheaters are calibrated inside a convection oven to obtain the temperature coefficient with a linear or quadratic fit. A voltage amplifier applies the supply voltage proportional to the control signal from the PID controller. Small changes in heater resistance generate a finite voltage across the quarter bridge circuit, which is fed back to the PID controller to compare with the set-point and to generate the control signal. Two MEMS microheaters are used for evaluating the developed control system - a NiCr serpentine microheater for a preconcentrator and a Nickel microheater for ${\underline{P}}olymerase\;{\underline{C}}hain\;{\underline{R}}eaction$ (PCR) chip.

PWM 제어방식에 의한 온열치료기의 새로운 온도제어 시스템 (A New Temperature Control System by PWM Control Method for Thermal Massage System)

  • 송명규;이재흥
    • 전기전자학회논문지
    • /
    • 제18권3호
    • /
    • pp.409-419
    • /
    • 2014
  • 본 논문에서는 온열치료기의 온도제어 알고리즘 및 시스템을 구현하였다. PWM(Pulse Width Modulation) 파형의 온 타임 펄스폭을 제어함으로서 온열치료기의 마사지 기능에 적합한 온열요법이 내장된 안정된 온도제어를 구현 할 수 있었으며 의료기기의 온열마사지, 온열지압, 온열 뜸 기능에 적용 하였다. 온도설정 범위는 $40^{\circ}C$에서 $70^{\circ}C$까지이며 $5^{\circ}C$ 단위로 설정하였고 제어량은 실시간으로 $1^{\circ}C$ 단위로 제어하였으며 $1^{\circ}C$ 간격으로 온도를 표시하였다. 제어범위는 설정온도와 현재온도의 차가 $4^{\circ}C$이하부터 4단계로 PWM 펄스폭을 가변하여 램프의 출력을 제어하였다. 현재온도가 설정온도와 같을 경우 PWM 신호를 최소로 하였고 현재온도가 설정온도 보다 클 경우는 PWM 출력 신호를 정지시켜 오버헌팅을 방지했으며 연산차가 $4^{\circ}C$이상인 경우 PWM 제어량을 최대폭으로 하여 시스템을 빠른 상승시간 안에 목표치에 도달할 수 있도록 제어하는 방식으로 구현하였다.