• Title/Summary/Keyword: temperature coefficient resistivity

Search Result 231, Processing Time 0.032 seconds

Development of Electroconductive SiC Ceramic Heater by Spark Plasma Sintering (방전플라즈마 소결에 의한 자기 통전식 SiC계 세라믹 발열체 개발)

  • Shin, Yong-Deok;Choi, Won-Seok;Ko, Tae-Hun;Lee, Jung-Hoon;Ju, Jin-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.770-776
    • /
    • 2009
  • The composites were fabricated by adding 0, 15, 30, 45[vol.%] $ZrB_2$ powders as a second phase to SiC matrix. The physical, mechanical and electrical properties of electroconductive SiC ceramic composites by spark plasma sintering(SPS) were investigated. Reactions between ${\beta}$-SiC and $ZrB_2$ were not observed in the XRD and the phase analysis of the electroconductive SiC ceramic composites. The relative density of mono ${\beta}$-SiC, ${\beta}$-SiC+15[vol.%]$ZrB_2$, ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]$ZrB_2$ composites are respectively 99.24[%], 87.53[%], 96.41[%] and 98.11[%] Phase analysis of the electroconductive SiC ceramic composites by XRD revealed mostly of ${\beta}$-SiC, $ZrB_2$ and weakly of $ZrO_2$ phase. The flexural strength showed the lowest of 114.44[MPa] for ${\beta}$-SiC+15[vol.%]$ZrB_2$ powders and showed the highest of 210.75[MPa] for composite no added with $ZrB_2$ powders at room temperature. The trend of the mechanical properties of the electroconductive SiC ceramic composites is accorded with the trend of the relative density. The electrical resistivity of the electroconductive SiC ceramic composites decreased with increased $ZrB_2$ contents. The electrical resistivity of mono ${\beta}$-SiC, ${\beta}$-SiC+15[vol.%]$ZrB_2$, ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]$ZrB_2$ composites are respectively $4.57{\times}10^{-1},\;2.13{\times}10^{-1},\;2.68{\times}10^{-2}\;and\;1.99{\times}10^{-2}[{\Omega}{\cdot}cm]$ at room temperature. The electrical resistivity of mono ${\beta}$-SiC and ${\beta}$-SiC+15[vol.%]$ZrB_2$ are negative temperature coefficient resistance(NTCR) in temperature ranges from $25[^{\circ}C]\;to\; 100[^{\circ}C]$. The electrical resistivity of ${\beta}$-SiC+30[vol.%]$ZrB_2$ and ${\beta}$-SiC+45[vol.%]ZrB_2$ are positive temperature coefficient resistance(PTCR) in temperature ranges from $25[^{\circ}C]\;to\;100[^{\circ}C]$. It is convinced that ${\beta}$-SiC+30[vol.%]$ZrB_2$ composites by SPS for heater or ignitors can be applied.

Effect of Annealing Temperature on Microstructure and Properties of the Pressureless-Sintered $SiC-ZrB_2$ Electroconductive Ceramic Composites (상압소결(常壓燒結)한 $SiC-ZrB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 Annealing 온도(溫度)의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.9
    • /
    • pp.434-441
    • /
    • 2006
  • The effect of pressureless-sintered temperature on the densification behavior, mechanical and electrical properties of the $SiC-ZrB_2$ electroconductive ceramic composites was investigated. The $SiC-ZrB_2$ electroconductive ceramic composites were pressureless-sintered for 2 hours at temperatures in the range of $1,750{\sim}1,900[^{\circ}C]$, with an addition of 12[wt%] of $Al_2O_3+Y_2O_3$(6:4 mixture of $Al_2O_3\;and\;Y_2O_3$) as a sintering aid. The relative density and mechanical properties are increased markedly at temperatures in the range of $1,850{\sim}1,900[{^\circ}C]$. The relative density, flexural strength, vicker's hardness and fracture toughness showed the highest value of 81.1[%], 230[MPa], 9.88[GPa] and $6.05[MPa\;m^{1/2}]$ for $SiC-ZrB_2$ composites of $1,900[{^\circ}C]$ sintering temperature at room temperature respectively. The electrical resistivity was measured by the Pauw method in the temperature ranges from $25[{^\circ}C]\;to\;700[{^\circ}C]$, The electrical resistivity showed the value of $1.36{\times}10^{-4},\;3.83{\times}10^{-4},\;3.51{\times}10^{-4}\;and\; 3.2{\times}10^{-4}[{\Omega}{\cdot}cm]$ for SZ1750, SZ1800, SZ1850 and SZ1900 respectively at room temperature. The electrical resistivity of the composites was all PTCR(Positive Temperature Coefficient Resistivity). The resistance temperature coefficient showed the value of $4.194{\times}10^{-3},\;3,740{\times}10^{-3},\;2,993{\times}10^{-3},\;3,472{\times}10^{-3}/[^{\circ}C}$ for SZ1750, SZ1800, SZ1850 and SZ1900 respectively in the temperature ranges from $25[{\circ}C]\;to\;700[{\circ}C]$, It is assumed that because polycrystallines such as recrystallized $SiC-ZrB_2$ electroconductive ceramic composites, contain of porosity and In Situ $YAG(Al_5Y_3O_{12})$ crystal grain boundaries, their electrical conduction mechanism are complicated. In addition, because the condition of such grain boundaries due to $Al_2O_3+Y_2O_3$ additives widely varies with sintering temperature, electrical resistivity of the $SiC-ZrB_2$ electroconductive ceramic composites with sintering temperature also varies with sintering condition. It is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

Effect of Annealing Temperature on Microstructure and Properties of the Pressureless-Sintered $SiC-TiB_2$ Electroconductive Ceramic Composites (상압소결(常壓燒結)한 $SiC-TiB_2$ 전도성(電導性) 복합체(複合體)의 미세구조(微細構造)와 특성(特性)에 미치는 Annealing 온도(溫度)의 영향(影響))

  • Shin, Yong-Deok;Ju, Jin-Young
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.10
    • /
    • pp.467-474
    • /
    • 2006
  • The effect of pressureless-sintered temperature on the densification behavior, mechanical and electrical properties of the $SiC-TiB_2$ electroconductive ceramic composites was investigated. The $SiC-TiB_2$ electroconductive ceramic composites were pressureless-sintered for 2 hours at temperatures in the range of $1,750{\sim}1,900[^{\circ}C]$, with an addition of 12[wt%] $Al_2O_3+Y_2O_3(6:4\;mixture\;of\;Al_2O_3\;and\;Y_2O_3)$ as a sintering aid. The relative density, flexural strength, vicker's hardness and fracture toughness showed the highest value of 84.92[%], 140[MPa], 4.07[GPa] and $3.13[MPa{\cdot}m^{1/2}]$ for $SiC-TiB_2$ composites of $1,900[^{\circ}C]$ sintering temperature at room temperature respectively. The electrical resistivity was measured by the Pauw method in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. The electrical resistivity showed the value of $5.51{\times}10^{-4},\;2.11{\times}10^{-3},\;7.91{\times}10^{-4}\;and\;6.91{\times}10^{-4}[\Omega{\cdot}cm]$ for ST1750, ST1800, ST1850 and ST1900 respectively at room temperature. The electrical resistivity of the composites was all PTCR(Positive Temperature Coefficient Resistivity). The resistance temperature coefficient showed the value of $3.116{\times}10^{-3},\;2.717{\times}10^{-3},\;2.939{\times}10^{-3},\;3.342{\times}10^{-3}/[^{\circ}C]$ for ST1750, ST1800, ST1850 and ST1900 respectively in the temperature ranges from $25[^{\circ}C]\;to\;700[^{\circ}C]$. It is assumed that because polycrystallines, such as recrystallized $SiC-TiB_2$ electroconductive ceramic composites, contain of porosity and In Situ $YAG(Al_5Y_3O_{12})$ crystal grain boundaries, their electrical conduction mechanism are complicated. In addition, because the condition of such grain boundaries due to $Al_2O_3+Y_2O_3$ additives widely varies with sintering temperature, electrical resistivity of the $SiC-TiB_2$ electroconductive ceramic composites with sintering temperature also varies with sintering condition. It is convinced that ${\beta}-SiC$ based electroconductive ceramic composites for heaters or ignitors can be manufactured by pressureless sintering.

Effects of the Re-oxidation Temperature and Time on the PTC Properties of Sm-doped BaTiO3 (Sm을 첨가한 BaTiO3계의 재산화 온도 및 시간에 따른 PTC 특성 변화)

  • Chung, Yong-Keun;Choi, Sung-Churl
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.3
    • /
    • pp.330-335
    • /
    • 2009
  • We investigated the effects of the re-oxidation temperature and time on the positive temperature coefficient (PTC) of resistivity characteristics of Sm-doped $BaTiO_3$ sintered at $1200{\sim}1260^{\circ}C$ for 2 h in a reducing atmosphere (3% $H_2/N_2$), followed by re-oxidization processes in air, in which re-oxidization temperature and time were $600{\sim}1000^{\circ}C$ and $1{\sim}10$h, respectively. The result reveals that Smdoped (Ba,Ca)$TiO_3$ ceramics fired in a reducing atmosphere exhibit low PTC characteristics, whereas the sample re-oxidized at $800^{\circ}C$ for 1 h in air exhibit pronounced PTC characteristics. The room-temperature resistivity and jumping characteristics of resistivity (${\rho}_{max}/{\rho}25^{\circ}C$) decrease with Sm contents. The PTC characteristics with reoxidization time at $800^{\circ}C$ have improved about $2{\sim}3$ orders of magnitude whereas differed according to the sintering temperature. The 0.7 at% Sm-doped (Ba,Ca)$TiO_3$ samples reveal the best PTC characteristics in the present range of formula and processes.

The characterization of the $Si_{1-x}Sb_x$ thin films for infrared microbolometer (적외선 마이크로 볼로미터를 위한 $Si_{1-x}Sb_x$ 박막의 특성)

  • Lee, Dong-Keun;Ryu, Sang-Ouk;Yang, Woo-Seok;Cho, Seong-Mok;Cheon, Sang-Hoon;Ryu, Ho-Jun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.3
    • /
    • pp.13-17
    • /
    • 2009
  • we have studied characterization of microbolometer based on the co-sputtered silicon-antimony ($Si_{1-x}Sb_x$) thin film for infrared microbolometer. We have investigated the resistivity and the temperature coefficient of resistance (TCR) with annealing. We deposited the films using co-sputtering method at $200^{\circ}C$ in the Ar environment. The Sb concentration has been adjusted by applying variable DC power from Sb targets. TCR of deposited $Si_{1-x}Sb_x$ films have been measured the range of -2.3~-2.8%/K. The resistivity of the film is low but TCR is higher than the other bolometer materials. Resistivity of the films has not been affected hugely according to the low annealing temperature however the resistivity has been dramatically decreased over $250^{\circ}C$. It is caused of a phase change due to the rearrangement of Si and Sb atoms during crystallization process of the films.

  • PDF

A New Class of NTC Thermistors

  • Kato, Kazuya;Ota, Toshitaka;Hikichi, Yasuo;Unuma, Hidero;Takahashi, Minoru;Suzuki, Hisao
    • The Korean Journal of Ceramics
    • /
    • v.6 no.2
    • /
    • pp.168-171
    • /
    • 2000
  • VO$_2$ceramics exhibiting a negative temperature coefficient (NTC) of resistivity have been widely used as temperature dependence resistors. The NTC effect similar to $VO_2$ceramics was observed when a low-thermal-expansion ceramic matrix was loaded near the percolation threshold with conductive metal particles. The resistivity in a composite made from silica glass and 20 vol% Ag filler suddenly decreased from $10^{-7}$ to $10^3\;\Omega$cm at about $300^{\circ}C$.

  • PDF

Effect of Sintering Temperature on Properties of $\beta$-SiC-$ZrB_2$ Composites Manufactured by Pressureless Sintering (상압소결법에 의해 제조한 $\beta$-SiC-$ZrB_2$ 복합체의 특성에 미치는 소결온도의 영향)

  • Ju, Jin-Young;Shin, Yong-Deok
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1436-1438
    • /
    • 2001
  • The $\beta$-SiC + $ZrB_2$ ceramic electroconductive composites were pressureless-sintered and annealed by adding 12wt% $Al_2O_3$ + $Y_2O_3$ (6 : 4wt%) powder as a function of sintering temperature. The relative density showed the highest value of 81.1% at 1900$^{\circ}C$ sintering temperature. The phase analysis of the composites by XRD revealed of $\alpha$-SiC(6H), $TiB_2$, $Al_5Y_2O_{12}$ and $\beta$-SiC(15R). Flexural strength showed the highest value of 230 MPa for composites sintered at 1900$^{\circ}C$. The vicker's hardness and the fracture toughness showed the highest value of increased with increasing sintering temperature and showed the highest of 9.88 GPa and 6.05 $MPa{\cdot}m^{1/2}$ at 1900$^{\circ}C$. The electrical resistivity was measured by the Pauw method from 25$^{\circ}C$ to 700$^{\circ}C$. The electrical resistivity of the composites showed the PTCR (Positive Temperature Coefficient Resistivity).

  • PDF

Resistivity-Temperature Properties of Mn-Mg-Fe Oxide Systems (Mn-Mg-Fe 계 산화물 조성의 저항-온도 특성)

  • 이승관;김종령;오영우
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.407-410
    • /
    • 2000
  • (M $n_{l-x}$M $g_{l-x}$)F $e_{2+x}$ $O_4$(x=0.0, 0.025, 0.1, 0.2) for NTC(negative temperature coefficient) thermistor was prepared by calcining at 80$0^{\circ}C$ and sintering at from 1100 to 130$0^{\circ}C$ with 5$0^{\circ}C$ intervals while x was varied from 0.0 to 0.025, 0.1 and 0.2. The best linear property was obtained in the based specimen sintered at 120$0^{\circ}C$ with x=0.1 composition. Thermistor parameter, $B_{25~85^{\circ}C}$, was in the range of 5000~ 7300 [K]. Temperature coefficient of resistance, $\alpha$$_{25^{\circ}C}$, was -5.2 %/$^{\circ}C$. The results showed the possibility that Mn-Ni-Co based thermistor could be substituted by the composition used in this study was confirmed.med.d.

  • PDF

A study on the electrical characteristic of 0-02PYW-0-98PZT ceramics dopped with NiO, $Cr_2O_3$ (NiO, $Cr_2O_3$를 첨가한 0-02PYW-0.98PZT세라믹의 전기적특성에 관한 연구)

  • 김진섭;김현철;손효승;임인호;배선기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.638-641
    • /
    • 1999
  • In consideration of Dielectric loss and Temperature stability, 3-element system dopped with NiO, $Cr_2O_3$, well-known as Hardner and Stabilizer whose primary element is PZT was eximanated its structure, Temperature Coefficient of Capacitor, relative resistivity for Temperature Compensation condensor study. dopping with Nio, $Cr_2O_3$, Temperature Characteristic is developed, Dielectric loss largely represented useful1 small values in specimens dopped with NiO 0.2wt%, and specimence sintered at $110^{\circ}C$ dopped with $Cr_2O_3$, 0.1wt% also relative resistivity largely showed tendency of decrement According to dopping NiO more.

  • PDF

A Study on Protective Control System for Electrical Fire using Characteristics of SCR and Multilayer-Type PTC Thermistor (SCR과 적층형 PTC 서미스터의 전기적 특성을 이용한 전기화재 보호제어시스템에 관한 연구)

  • Kwak Dong-Kurl
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.1 s.38
    • /
    • pp.31-35
    • /
    • 2006
  • This paper is studied on a protective control system for electrical fire used electrical characteristics of SCR and multilayer-type PTC thermistor. The PTC thermistor has characteristic or positive resistivity temperature coefficient according to the temperature variation, which is construction of a regular square and cube demarcation with $BaTiO_{3_}$Ceramics of positive temperature coefficient. Also PTC shows the phenomenon which is rapidly increased in the resistivity if the temperature is increased over Curie temperature point. This paper is proposed on a protective control system used multilayer-type PTC which is protected from electrical fire due to electric short circuit faults or overload faults. Some experimental results of the proposed apparatus is confirmed to the validity of the analytical results.

  • PDF