• Title/Summary/Keyword: television watching

Search Result 423, Processing Time 0.03 seconds

An Interactive Cooking Video Query Service System with Linked Data (링크드 데이터를 이용한 인터랙티브 요리 비디오 질의 서비스 시스템)

  • Park, Woo-Ri;Oh, Kyeong-Jin;Hong, Myung-Duk;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.3
    • /
    • pp.59-76
    • /
    • 2014
  • The revolution of smart media such as smart phone, smart TV and tablets has brought easiness for people to get contents and related information anywhere and anytime. The characteristics of the smart media have changed user behavior for watching the contents from passive attitude into active one. Video is a kind of multimedia resources and widely used to provide information effectively. People not only watch video contents, but also search for related information to specific objects appeared in the contents. However, people have to use extra views or devices to find the information because the existing video contents provide no information through the contents. Therefore, the interaction between user and media is becoming a major concern. The demand for direct interaction and instant information is much increasing. Digital media environment is no longer expected to serve as a one-way information service, which requires user to search manually on the internet finding information they need. To solve the current inconvenience, an interactive service is needed to provide the information exchange function between people and video contents, or between people themselves. Recently, many researchers have recognized the importance of the requirements for interactive services, but only few services provide interactive video within restricted functionality. Only cooking domain is chosen for an interactive cooking video query service in this research. Cooking is receiving lots of people attention continuously. By using smart media devices, user can easily watch a cooking video. One-way information nature of cooking video does not allow to interactively getting more information about the certain contents, although due to the characteristics of videos, cooking videos provide various information such as cooking scenes and explanation for each recipe step. Cooking video indeed attracts academic researches to study and solve several problems related to cooking. However, just few studies focused on interactive services in cooking video and they still not sufficient to provide the interaction with users. In this paper, an interactive cooking video query service system with linked data to provide the interaction functionalities to users. A linked recipe schema is used to handle the linked data. The linked data approach is applied to construct queries in systematic manner when user interacts with cooking videos. We add some classes, data properties, and relations to the linked recipe schema because the current version of the schema is not enough to serve user interaction. A web crawler extracts recipe information from allrecipes.com. All extracted recipe information is transformed into ontology instances by using developed instance generator. To provide a query function, hundreds of questions in cooking video web sites such as BBC food, Foodista, Fine cooking are investigated and analyzed. After the analysis of the investigated questions, we summary the questions into four categories by question generalization. For the question generalization, the questions are clustered in eleven questions. The proposed system provides an environment associating UI (User Interface) and UX (User Experience) that allow user to watch cooking videos while obtaining the necessary additional information using extra information layer. User can use the proposed interactive cooking video system at both PC and mobile environments because responsive web design is applied for the proposed system. In addition, the proposed system enables the interaction between user and video in various smart media devices by employing linked data to provide information matching with the current context. Two methods are used to evaluate the proposed system. First, through a questionnaire-based method, computer system usability is measured by comparing the proposed system with the existing web site. Second, the answer accuracy for user interaction is measured to inspect to-be-offered information. The experimental results show that the proposed system receives a favorable evaluation and provides accurate answers for user interaction.

Energy expenditure measurement of various physical activity and correlation analysis of body weight and energy expenditure in elementary school children (일부 초등학생의 대표적 신체활동의 에너지소비량 측정 및 에너지소비량과 체중과의 상관성 분석)

  • Kim, Jae-Hee;Son, Hee-Ryoung;Choi, Jung-Sook;Kim, Eun-Kyung
    • Journal of Nutrition and Health
    • /
    • v.48 no.2
    • /
    • pp.180-191
    • /
    • 2015
  • Purpose: There is a lack of data on the energy cost of children's everyday activities, adult values are often used as surrogates. In addition, the influence of body weight on the energy cost of activity when expressed as metabolic equivalents (METs) has not been vigorously explored. Methods: In this study 20 elementary school students 9~12 years of age completed 18 various physical activities while energy expenditure was measured continuously using a portable telemetry gas exchange system ($K_4b^2$, Cosmed, Rome, Italy). Results: The average age was 10.4 years and the average height and weight was 145.1 cm and 43.6 kg, respectively. Oxygen consumption ($VO_2$), energy expenditure and METs at the time of resting of the subjects were 5.41 mL/kg/min, 1.44 kcal/kg/h, and 1.5 METs, respectively. METs values by 18 physical activities were as follows: Homework and reading books (1.6 METs), playing game with a mobile phone or video while sitting (1.6 METs), watching TV while sitting on a comfortable chair (1.7 METs), playing video game or mobile phone game while standing (1.9 METs), sweeping a room with a broom (2.7 METs) and playing a board game (2.8 METs) belong to light intensity physical activities. By contrary, speedy walking and running were 6.6 and 6.7 METs, respectively, which belong to high intensity physical activities over 6.0 METs. When the effect of body weight on physical activity energy expenditure was determined, $R^2$ values increased with 0.116 (playing a game at sitting), 0.176 (climbing up and down stairs), 0.246 (slow walking), and 0.455 (running), which showed that higher activity intensity increased explanation power of body weight on METs value. Conclusion: This study is important for direct evaluation of energy expenditure by physical activities of children, and it could be used directly for revising and complementing the existing activity classification table to fit for children.

Content-based Recommendation Based on Social Network for Personalized News Services (개인화된 뉴스 서비스를 위한 소셜 네트워크 기반의 콘텐츠 추천기법)

  • Hong, Myung-Duk;Oh, Kyeong-Jin;Ga, Myung-Hyun;Jo, Geun-Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.3
    • /
    • pp.57-71
    • /
    • 2013
  • Over a billion people in the world generate new news minute by minute. People forecasts some news but most news are from unexpected events such as natural disasters, accidents, crimes. People spend much time to watch a huge amount of news delivered from many media because they want to understand what is happening now, to predict what might happen in the near future, and to share and discuss on the news. People make better daily decisions through watching and obtaining useful information from news they saw. However, it is difficult that people choose news suitable to them and obtain useful information from the news because there are so many news media such as portal sites, broadcasters, and most news articles consist of gossipy news and breaking news. User interest changes over time and many people have no interest in outdated news. From this fact, applying users' recent interest to personalized news service is also required in news service. It means that personalized news service should dynamically manage user profiles. In this paper, a content-based news recommendation system is proposed to provide the personalized news service. For a personalized service, user's personal information is requisitely required. Social network service is used to extract user information for personalization service. The proposed system constructs dynamic user profile based on recent user information of Facebook, which is one of social network services. User information contains personal information, recent articles, and Facebook Page information. Facebook Pages are used for businesses, organizations and brands to share their contents and connect with people. Facebook users can add Facebook Page to specify their interest in the Page. The proposed system uses this Page information to create user profile, and to match user preferences to news topics. However, some Pages are not directly matched to news topic because Page deals with individual objects and do not provide topic information suitable to news. Freebase, which is a large collaborative database of well-known people, places, things, is used to match Page to news topic by using hierarchy information of its objects. By using recent Page information and articles of Facebook users, the proposed systems can own dynamic user profile. The generated user profile is used to measure user preferences on news. To generate news profile, news category predefined by news media is used and keywords of news articles are extracted after analysis of news contents including title, category, and scripts. TF-IDF technique, which reflects how important a word is to a document in a corpus, is used to identify keywords of each news article. For user profile and news profile, same format is used to efficiently measure similarity between user preferences and news. The proposed system calculates all similarity values between user profiles and news profiles. Existing methods of similarity calculation in vector space model do not cover synonym, hypernym and hyponym because they only handle given words in vector space model. The proposed system applies WordNet to similarity calculation to overcome the limitation. Top-N news articles, which have high similarity value for a target user, are recommended to the user. To evaluate the proposed news recommendation system, user profiles are generated using Facebook account with participants consent, and we implement a Web crawler to extract news information from PBS, which is non-profit public broadcasting television network in the United States, and construct news profiles. We compare the performance of the proposed method with that of benchmark algorithms. One is a traditional method based on TF-IDF. Another is 6Sub-Vectors method that divides the points to get keywords into six parts. Experimental results demonstrate that the proposed system provide useful news to users by applying user's social network information and WordNet functions, in terms of prediction error of recommended news.