• Title/Summary/Keyword: telescope arrays

Search Result 12, Processing Time 0.033 seconds

Korean ALMA Near-term Technical Activities: Development Plan of Focal Plane Array for ASTE

  • Lee, Jung-Won;Kim, Jongsoo;Lee, Chang-Won;Je, Do-Heung;Kang, Yong-Woo;Lee, Bangwon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.116.2-116.2
    • /
    • 2014
  • As Korean engineering contribution to ALMA enhancement, development of focal plane arrays(FPAs) for the total power array in ALMA compact array has been projected mainly to increase mapping speed in interferometric multi-pointing observation(mosaicking). To tackle engineering issues expected in order to be compatible with the existing ALMA receivers, we plan to develop a prototype 300-500 GHz heterodyne FPA system including a software spectrometer using GPU clusters for ASTE(Atacama Submillimeter Telescope Experiment) telescope by 2017.

  • PDF

Robert H. Koch's Work on Lightweight Medium-Aperture Mirrors

  • Holenstein, Bruce D.;Mitchell, Richard J.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.1
    • /
    • pp.79-84
    • /
    • 2012
  • After a visit by Peter Waddell from the University of Strathclyde, Glasgow, UK in 1991, Robert H. Koch launched a program at the University of Pennsylvania to build lightweight pneumatic membrane mirrors, initially for balloon flight observations where weight is at a premium. Mirror cells were fabricated from sizes 0.18 m to 1.77 m, and experiments conducted to characterize the mirror figure and stability. Most of the work stopped after Prof. Koch's retirement in 1996 until 2006 when the authors expressed an interest in building an array of medium-aperture portable telescopes. The program restarted in earnest at Gravic, Inc. in Malvern, PA in 2008 with Koch using his extensive observational astronomy experience to guide the fabrication of a fully operational 1.07 m membrane mirror telescope with an optical tube assembly weighing under 45 Kg. Residual wavefront aberrations remediation resulted in Koch and the authors investigating membrane tensioning techniques with different cell designs, active secondary wavefront correction, photometric algorithms for aberrated images, and the use of additional lightweight mirror substrates from the Alt-Az Initiative Group, such as foamed glass. The best result for the lightweight mirrors was a point spread function spot size of several arc seconds. A lightweight 1.6 m cast aluminum cell alt-az telescope was subsequently designed by Koch and the authors for prime focus use.

IGRINS Exposure Time Calculator

  • Le, Huynh Anh Nguyen;Pak, Soojong;Sim, Chae Kyung;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.62.1-62.1
    • /
    • 2013
  • We present the Exposure Time Calculator of IGRINS (Immersion Grating Infrared Spectrograph). The noises of IGRINS and the simulated emission line can be calculated from the combination of Telluric background emission and absorptions, the emission and transmission of the telescope and instrument optics, and the dark noise and the read noise of the infrared arrays. For the atmospheric transmissions, we apply the simulated spectra depending on the Precipitable Water Vapor (PWV) values. In case of calculation of noises, the user needs to input the expected target magnitude, the weather conditions, and the desired exposure time. In addition to the simulated emission line, the parameters of rest wavelength, line-flux, Doppler shift and line-width are needed. The output would be the expected signal-to-noise for each spectral resolution element. The source-code of IGRINS-ETC v2.1.1 is available to be downloaded on the World Wide Web.

  • PDF

IGRINS Exposure Time Calculator

  • Le, Huynh Anh Nguyen;Pak, Soo-Jong;Kang, Won-Seok;Lee, Jong-Min;Lee, Sung-Won;Seifahrt, Andreas;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.151.1-151.1
    • /
    • 2011
  • We present the Exposure Time Calculator of IGRINS. The noises of IGRINS can be calculated from the combination of Telluric background emission and absorptions, the emission and transmission of the telescope and instrument optics, and the dark noise and the read noise of the infrared arrays. For the atmospheric transmissions, we apply the simulated spectra depending on the Precipitable Water Vapor (PWV) values. The user needs to input the expected target magnitude, the weather conditions, and the desired exposure time. The output would be the expected signal-to-noise for each spectral resolution element.

  • PDF

SEARCH FOR TECHNOSIGNATURE (기술문명징후 탐색)

  • Sungwook E. Hong;Bong Won Sohn;Taehyun Jung;Min-Su Shin;Hyunwoo Kang;Minsun Kim
    • Publications of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.75-89
    • /
    • 2023
  • Technosignature, previously known as SETI(search for extraterrestrial intelligence), is the scientific evidence of past or present extraterrestrial civilizations. Since NRAO's Project Ozma was performed in 1960, most of the noticeable technosignature searches have been done by radio telescopes, hoping to find strong and narrow bandwidth signals that cannot be explained by known natural processes. Recently, the Breakthrough Listen project has opened a new opportunity for technosignature by utilizing both optical telescopes, radio telescopes, and next-generation radio telescope arrays. In this review, mainly based on NASA Technosignatures Workshop (2018), we review the current trends of technosignature surveys, as well as other possible methods for detecting technosignature. Also, we suggest what the Korean community could contribute the technosignature research, including the new SETI project with Korea VLBI Network (KVN).

The Electronics system of the Ultra Fast Flash Observatory Pathfinder

  • Kim, Ji Eun;Choi, Ji Nyeong;Choi, Yeon Ju;Jeong, Soomin;Jung, Aera;Kim, Min Bin;Kim, Sug-Whan;Kim, Ye Won;Lee, Jik;Lim, Heuijin;Min, Kyung Wook;Na, Go Woon;Park, Il Hung;Ripa, Jakub.;Suh, Jung Eun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.207.2-207.2
    • /
    • 2012
  • The Ultra Fast Flash Observatory (UFFO) pathfinder consists of the UFFO Burst Alert X-ray Trigger telescope (UBAT) and the Slewing Mirror Telescope (SMT). They are controlled by the UFFO Data Acquisition system (UDAQ). The UBAT triggers Gamma-Ray Bursts(GRBs) and sends the position information to the SMT. The SMT slews the motorized mirror rapidly to the GRB position to take the UV/Optical data within a second after trigger. The UDAQ controls each instrument, communicates with the satellite, collects the data from UBAT and SMT, and transfers them to the satellite. Each instrument uses its own field programmable gates arrays (FPGA) for low power consumption and fast processing, and all functions are implemented in FPGAs without using microprocessors. The entire electronics system of the UFFO pathfinder including architecture, control, and data flow will be presented.

  • PDF

Design and Construction of Detector Module for UFFO Burst Alert & Trigger Telescope

  • Jung, Aera;Ahmad, Salleh;Barrillon, Pierre;Brandt, Soren;Budtz-Jorgensen, Carl;Castro-Tirado, Alberto J.;Chen, Pisin;Choi, Ji Nyeong;Choi, Yeon Ju;Connell, Paul;Dagoret-Campagne, Sylvie;Eyles, Christopher;Grossan, Bruce;Huang, Ming-Huey A.;Jeong, Soomin;Kim, Ji Eun;Kim, Min Bin;Kim, Sug-Whan;Kim, Ye Won;Krasnov, A.S.;Lee, Jik;Lim, Heuijin;Linder, Eric V.;Liu, T.C.;Lund, Niels;Min, Kyung Wook;Na, Go Woon;Nam, Ji Woo;Panasyuk, Mikhile I.;Park, Il Hung;Ripa, Jakub.;Reglero, Victor;Rodrigo, Juana M.;Smoot, George.F.;Suh, Jung Eun;Svertilov, Sergei.;Vedenkin, Nikolay;Wang, Min-Zu;Yashin, Ivan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.207.1-207.1
    • /
    • 2012
  • One of the key aspects of the upcoming Ultra-Fast Observatory (UFFO) Pathfinder for Gamma-Ray Bursts(GRBs) identification will be the UFFO Burst Alert & Trigger Telescope(UBAT), based on a novel space telescope technique. The UBAT consists of coded mask, hopper, and detector module(DM). The UBAT DM consists of YSO crystal arrays, multi-anode photo mulipliers, and readout electronics. We will present the design and construction of the UBAT DM, and the response of the UBAT DM to X-ray sources.

  • PDF

Optical Design of the DOTIFS Spectrograph

  • Chung, Haeun;Ramaprakash, A.N.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.100.2-100.2
    • /
    • 2014
  • The DOTIFS is a new multi-object Integral Field Spectrograph (IFS) planned to be designed and built by the Inter-University Center for Astronomy and Astrophysics, Pune, India, (IUCAA) for cassegrain side port of the 3.6m Devasthal Optical Telescope (DOT) being constructed by the Aryabhatta Research Institute of Observational Sciences, Nainital. (ARIES) It is a multi-integral field unit (IFU) spectrograph which has 370-740nm wavelength coverage with spectral resolution R~1200-2400. Sixteen IFUs with microlens arrays and fibers can be deployed on 8 arcmin field. Each IFU has $8.7^{{\prime}{\prime}}{\times}7.4^{{\prime}{\prime}}$ field of view with 144 spaxel elements. 2304 fibers coming from IFUs are dispersed by eight identical spectrographs with all refractive and all spherical optics. In this work, we show optical design of the DOTIFS spectrograph. Expected performance and result of tolerance and thermal analysis are also shown. The optics is comprised of f=520mm collimator, broadband filter, dispersion element and f=195mm camera. Pupil size is determined as 130mm from spectral resolution and budget requirements. To maintain good transmission down to 370nm, calcium fluoride elements and high transmission optical glasses have been used. Volume Phase Holographic grating is selected as a dispersion element to maximize the grating efficiency and to minimize the size of the optics. Detailed optics design report had been documented. The design was finalized through optical design review and now ready for order optics.

  • PDF

Multi-Core Fiber Based Fiber Bragg Gratings for Ground Based Instruments

  • Min, Seong-Sik;Lindley, Emma;Leon-Saval, Sergio;Lawrence, Jon;Bland-Hawthorn, Joss
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.53.2-53.2
    • /
    • 2015
  • Fiber Bragg gratings (FBGs) are the most compact and reliable method of suppressing atmospheric emission lines in the infrared for ground-based telescopes. It has been proved that real FBGs based filters were able to eliminate 63 bright sky lines with minimal interline losses in 2011 (GNOSIS). Inscribing FBGs on multi-core fibers offers advantages. Compared to arrays of individual SMFs, the multi-core fiber Bragg grating (MCFBG) is greatly reduced in size, resistant to damage, simple to fabricate, and easy to taper into a photonics lantern (PRAXIS). Multi-mode fibers should be used and the number of modes has to be large enough to capture a sufficient amount of light from the telescope. However, the fiber Bragg gratings can only be inscribed in the single-mode fiber. A photonic lantern bi-directionally converts multi-mode to single-mode. The number of cores in MCFBGs corresponds to the mode. For a writing system consisting of a single ultra-violet (UV) laser and phase mask, the standard writing method is insufficient to produce uniform MCFBGs due to the spatial variations of the field at each core within the fiber. Most significant technical challenges are consequences of the side-on illumination of the fiber. Firstly, the fiber cladding acts as a cylindrical lens, narrowing the incident beam as it passes through the air-cladding interface. Consequently, cores receive reduced or zero illumination, while the focusing induces variations in the power at those that are exposed. The second effect is the shadowing of the furthest cores by the cores nearest to the light source. Due to a higher refractive index of cores than the cladding, diffraction occurs at each core-cladding interface as well as cores absorb the light. As a result, any core that is located directly behind another in the beam path is underexposed or exposed to a distorted interference pattern from what phase mask originally generates. Technologies are discussed to overcome the problems and recent experimental results are presented as well as simulation results.

  • PDF

First Light Results of IGRINS Instrument Control Software

  • Lee, Hye-In;Pak, Soojong;Sim, Chae Kyung;Le, Huynh Anh N.;Jeong, Ueejeong;Chun, Moo-Young;Park, Chan;Yuk, In-Soo;Kim, Kangmin;Pavel, Michael;Jaffe, Daniel T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.54.2-54.2
    • /
    • 2014
  • IGRINS (Immersion GRating Infrared Spectrograph) is a high spectral resolution near-infrared spectrograph that has been developed in a collaboration between the Korea Astronomy & Space Science Institute and the University of Texas at Austin. By using a silicon immersion echelle grating, the size of the fore optics is reduced by a factor of three times and we can make a more compact instrument. One exposure covers the whole of the H- and K-band spectrum with R=40,000. While the operation of and data reduction for this instrument is relatively simple compared to other grating spectrographs, we still need to operate three infrared arrays, cryostat sensors, calibration lamp units, and the telescope during astronomical observations. The IGRINS Instrument Control Software consists of a Housekeeping Package (HKP), Slit Camera Package (SCP), Data Taking Package (DTP), and Quick Look Package (QLP). The SCP will do auto guiding using a center finding algorithm. The DTP will take the echellogram images of the H and K bands, and the QLP will confirm fast processing of data. We will have a commissioning observations in 2014 March. In this poster, we present the performance of the software during the test observations.

  • PDF