• Title/Summary/Keyword: tectonic setting

Search Result 60, Processing Time 0.027 seconds

Geochemistry and Petrogenesis of Pan-african Granitoids in Kaiama, North Central, Nigeria

  • Aliyu Ohiani Umaru;Olugbenga Okunlola;Umaru Adamu Danbatta;Olusegun G. Olisa
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.259-275
    • /
    • 2023
  • Pan African granitoids of Kaiama is comprised of K-feldspar rich granites, porphyritic granites, and granitic gneiss that are intruded by quartz veins and aplitic veins and dykes which trend NE-SW. In order to establish the geochemical signatures, petrogenesis, and tectonic settings of the lithological units, petrological, petrographical, and geochemical studies was carried out. Petrographic analysis reveals that the granitoids are dominantly composed of quartz, plagioclase feldspar, biotite, and k-feldspar with occasional muscovites, sericite, and opaque minerals that constitute very low proportion. Major, trace, and rare earth elements geochemical data reveal that the rocks have moderate to high silica (SiO2=63-79.7%) and alumina (Al2O3=11.85-16.15) contents that correlate with the abundance of quartz, feldspars, and biotite. The rocks are calc-alkaline, peraluminous (ASI=1.0-<1.2), and S-type granitoids sourced by melting of pre-existing metasedimentary or sedimentary rocks containing Al, Na, and K oxides. They plot dominantly in the WPG and VAG fields suggesting emplacement in a post-collisional tectonic setting. On a multi-element variation diagram, the granitoids show depletion in Ba, K, P, Rb, and Ti while enrichment was observed for Th, U, Nd, Pb and Sm. Their rare-earth elements pattern is characterized by moderate fractionation ((La/Yb)N=0.52-38.24) and pronounced negative Eu-anomaly (Eu/Eu*=0.02-1.22) that points to the preservation of plagioclase from the source magma. Generally, the geochemical features of the granitoids show that they were derived by the partial melting of crustal rocks with some input from greywacke and pelitic materials in a typical post-collisional tectonic setting.

Mineralogy and Geochemistry of Shale Deposits in the Lower Anambra Basin, Nigeria: Implication for Provenance, Tectonic Setting and Depositional Environment

  • Olugbenga Okunlola;Agonsi Udodirim Lydia;Aliyu Ohiani Umaru;Raymond Webrah Kazapoe;Olusegun G. Olisa
    • Economic and Environmental Geology
    • /
    • v.56 no.6
    • /
    • pp.799-816
    • /
    • 2023
  • Mineralogical and geochemical studies of shales within the Lower Anambra Basin was conducted to unravel the depositional environment, provenance, maturity, paleo-weathering conditions, and tectonic settings. Mineralogical studies conducted using X-ray diffraction analysis revealed that the samples were composed of kaolinite, montmorillonite, chlorite, and illite. KaolinIite is the dominant mineral, constituting approximately 41.5% of the bulk composition, whereas the non-clay minerals are quartz, ilmenite, and sillimanite. Geochemical analysis showed a predominance of SiO2, Al2O3, and Fe2O3 contents of the shale samples with mean values of 52.29%, 14.09%, and 6.15% for Imo Shale (IS); 52.31%, 16.70%, and 7.39% for Mamu Shale (MS); 43.21%, 21.33%, and 10.36% for Enugu Shale (ES); 53.35%, 15.64%, and 7.17% for Nkporo Shale (NS); and 51.24%, 17.25%, and 7.78% for Agwu Shale (AS). However, the shales were depleted in Na2O, MgO, K2O, MnO, TiO2, CaO, and P2O5. The trace element ratios of Ni/Co and Cu/Zn of the shale suggest an oxic depositional environment. The average SiO2 vs. Al2O3 ratio of the shales indicated textural maturity. Compared to the PAAS standard, the shales plot below the PAAS value of 0.85, suggesting a high degree of maturity and intensive chemical weathering, further confirmed on a CIA vs. PIA plot. On log (K2O/Na2O) against SiO2 and tectonic setting discriminant function diagrams, the shales plot mostly in the field of passive continental margin tectonic setting. The discriminant function diagrams as well as Al2O3/TiO2 ratio of the shales showed that they were derived from a mixed source (mafic and intermediate igneous rocks).

Geochemistry of cordierite-bearing motasedimentary rocks, northern Yeongnam Massif: implications for provenance and tectonic setting

  • Kim, Jeongmin;Moonsup Cho
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.54-54
    • /
    • 2003
  • The metasedimentary rocks together with various granitoids are the main constituents in Taebaeksan gneiss complex, northern Yeongnam Massif. Chemical compositions of sedimentary rocks may reflect the nature of the provenance and could be crucial for understanding the evolution of early continental crust. Previous workers have suggested that the provenance and tectonic studies based on the geochemistry of sediments are applicable to the Precambrian samples. In this study we analyzed the major, trace and REE elements of metasedimentary rocks to understand their provenance and tectonic setting during sedimentation. The overall geochemical characteristics of metasedimentary rocks are similar to those of average shale of the post-Archean. Major element chemistry indicates mature and sorted nature of the sediments. The degree of weathering in the source rocks the is not uniform, as inferred from a large scatter in chemical indices of weathering (CIW). The immobile trace elements such as Th, Sc, and REE can be used to discriminate various sedimentary processes. The Th/sc ratios (0.9 - 4.4) are larger than those of the upper crust and average shale, suggesting that the felsic source predominates. The contents of Ni and Cr and the variations in the ratio of compatible to incompatible elements are similar to the average post-Archean shale. Uniform chondrite-normalized REE pattern with the LREE enrichment (LaN/SmN = 4.9 ${\pm}$ 0.4) and slight negative Eu anomalies (Eu/Eu$\^$*/ = 0.7 ${\pm}$ 0.1) also support this observation. The presence of negative Eu anomaly indicates that intracrustal igneous processes involving plagioclase separation have affected the provenance rocks. The LREE enrichment implies the major role of felsic rocks in source rocks. The eNd (1.9 Ga) values of metasediment rocks vary from 9.4 to 6.7, corresponding to TDM of 2.9 - 2.7 Ga. On the other hand, the 147Sm/144Nd ratios are 0.1079 - 0.1101, corresponding to typical tettigenous sediments. The geochemical features of metasedimentary rocks such as high abundances of large ion lithophile elements, high ratios of Th/Sc and La/Sm, commonly high Th/U ratios, negative Eu anomalies, and negative eNd, suggest a provenance consisting virtually entirely of recycled upper continental crust in passive margin environment. Tectonic discrimination diagrams based upon major element compositions also support this suggestion. In conjunction with igneous activity and metamorphism in the convergent margin setting at 1.8 - 1. 9 Ga, the transition from passive margin to active margin characterize the Paleoproterozoic crustal evolution in northern Yeongnam Massif.

  • PDF

Influence of Tectonic Uplift on Longitudinal Profiles of Bedrock Rivers: Numerical Simulations (융기가 기반암 하상하천의 종단곡선에 미치는 영향에 대한 연구 -수리 모형을 통한 연구-)

  • Kim Jong Yeon
    • Journal of the Korean Geographical Society
    • /
    • v.39 no.5 s.104
    • /
    • pp.722-734
    • /
    • 2004
  • Longitudinal profiles of bedrock rivers play a fundamental role in landscape history by setting the boundary conditions for landform evolution. Longitudinal profiles are changed with climatic conditions, lithology and tectonic movements. Tectonic movement is an important factor controlling longitudinal profiles, especially in tectonically active area where uplift rates are regarded as a major factor controlling channel gradient. However study on bedrock channel has made little progress, because controls over bedrock river incision are yet to be clarified. Previous numerical simulations have used a simple diffusion model, which links together the overall processes of bedrock channel erosion as in other landform evolution models. In this study, previous bedrock incision models based on physical processes (especially abrasion) are reviewed and new modifications are introduced. Using newly formulated numerical model, the role of spatial pattern and intensity of tectonic uplift on changes in river longitudinal profile was simulated and discussed.

Enhancing LANDSAT TM to update the structural analysis of the Mirs Bay Basin, Hong Kong, China

  • Leung, K.F.;Vohora, V.K.;Chan, L.S.;Malpas, J.G.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.295-297
    • /
    • 2003
  • The coastal provinces of South China have been uniquely shaped by various tectonic events. During the midlate Mesozoic tectono-thermal event, the oblique subduction of the Paleo Kula-Pacific plate beneath the Eurasian plate has created a complicated tectonic setting for the whole region. However, the mechanism of this event is not completely understood. In this paper, we discuss the advantages of using LANDSAT TM satellite imagery over a small part of the region - the Mirs Bay Basin which is largely covered by dense vegetation and where limited outcrops is seen. The use of satellite imagery complements field mapping and the result shows a prominent sinistral offset along the eastern margin of the Mirs Bay Basin, which was not previously recognized on the ground.

  • PDF

Overview of Epithermal Gold-Silver Mineralization, Korea:

  • Park, Seon-Gyu;Ryu, In-Chang;So, Chil-Sup;Wee, Soo-Meen;Kim, Chang-Seong;Park, Sang-Joon;Kim, Sahng-Yup
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.7-14
    • /
    • 2003
  • The precious-meta] mineralization of epithermal type in the Korean Peninsula, which is spread over a broader range of ca. 110 to 60 Ma with a major population between 90 and 70 Ma, mainly occurred along the NE-trending major strike-slip fault systems (i.e., the Gongju and Gwangju ones) that commonly include volcano-tectonic depressions and calderas. The occurrence of epithermal mineralization during Late Cretaceous clearly indicates that the geologic setting of the Korean Peninsula changed to the favorable depth of ore formation with very shallow-crustal environments (〈1.0 kb) accompanied with gold-silver (-base-meta]) mineralization. Epithermal gold-silver deposits in Korea are primarily distinguished as sediment-dominant and volcanic-dominant basins by using criteria of varying alteration, ore and gangue mineralogy deposited by the interaction of different ore-forming fluids with host rocks and meteoric waters. These differences between the central and southern portions are causally linked to the tectonic evolution of the Peninsula during the Cretaceous time. In the Early Cretaceous, the sinistral strike-slip movements due to the oblique subduction of the Izanagi Plate resulted in the Gongju and Gwangju fault systems in the central portion of the Korean Peninsula, which was accompanied with a number of sediment-dominant basins formed along these faults. During the Late Cretaceous, the mode of convergence of the Izanagi Plate changed to northwesteward so that orthogonal convergence occurred with a calc-alkaline volcanism. As results, volcanic-dominant basins were developed in the southern portion of the Peninsula, accompanied with volcano-tectonic depressions and caldera-related fractures. The magmatism and related fractures during Late Cretaceous may play an important role in the formation of geothermal systems. Thus, such fault zones may be favorable environments for veining emplacement that is closely related to the precious-metal mineralization of epithermal type in the Korean Peninsula.

  • PDF

Initial Evaluation using Geochemical Data to infer Tectonic Setting of Mt. Baekdu/Changbaishan Volcano (백두산 화산의 지체구조 추론을 위한 지구화학적 데이터를 이용한 기초 평가)

  • Yun, Sung-Hyo;Chang, Cheolwoo;Pan, Bo
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.128-139
    • /
    • 2022
  • This study aimed to investigate the tectonic setting of the volcanic edifice at Mt. Baekdu by analyzing petrochemical characteristics of Holocene felsic volcanic rocks distributed in the Baekdusan stratovolcano edifice and summit of the Cheonji caldera rim, as well as Pleistocene mafic rocks of the Gaema lava plateau and Changbaishan shield volcano edifice. During the early eruption phases, mafic eruption materials, with composition ranging from alkali basalt to trachybasalt, or from subalkaline (tholeiitic) basalt to basaltic andesite formed the Gaema lava plateau and Changbaishan shield volcanic edifice, whereas the Baekdusan stratovolcano edifice and Holocene tephra deposits near the summit of the Cheonji caldera comprises trachytic and rhyolitic compositions. Analysis results revealed bimodal compositions with a lack of 54-62 SiO2, between the felsic and mafic volcanic rocks. This suggested that magmatic processes occurred at the locations of extensional tectonic settings in the crust. Mafic volcanic rocks were plotted in the field of within-plate volcanic zones or between within-plate alkaline and tholeiite zones on the tectonic discrimination diagram, and it was in good agreement with the results of the TAS diagram. Felsic volcanic rocks were plotted in the field of within-plate granite tectonic settings on discrimination diagrams of granitic rocks. None of the results were plotted in the field of arc islands or continental margin arcs. The primitive mantle-normalized spider diagram did not show negative (-) anomalies of Nb and Ti, which are distinctive characteristics of subduction-related volcanic rocks, but exhibited similar patterns of ocean island basalt. Trace element compositions showed no evidence of, magmatic processes related to subduction zones, indicating that the magmatic processes forming the Baekdusan volcanic field occurred in an intraplate environment. The distribution of shallow earthquakes in this region supports the results. The volcanic rocks of the Baekdusan volcanic field are interpreted as the result of intraplate volcanism originating from the upwelling of mantle material during the Cenozoic era.

Geochemistry and Tectonic Implications of Triassic Bojangsan Trachyte in the Southern Margin of the Imjingang Belt, Korea (임진강대 남변부 트라이아스기 보장산조면암의 지구화학과 조구조적 의미)

  • Hwang, Sang Koo;Ahn, Ung San
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.113-125
    • /
    • 2017
  • We investigates geochemical and tectonic characteristics for the Triassic Bojangsan trachyte in the southern margin of the Imjingang belt. The geochemical signatures of the thracyte are characterized by enrichments of REE and HFS, and show no Nb trough, suggesting that would not experience arc magmatic processes involving continental crustal materials. The trachyte reveals within-plate setting in tectonic discrimination diagrams using immobile HFS Nb and Y elements. And the trachyte shows typical signatures of A-type volcanic rocks with high Ga abundance and is classified as A1-type volcanic rocks rich in Nb. The geochemical signatures suggest that the trachyte was produced by the differentiation of mantle-derived magmatism at the continental rift in extensional setting subsequent to a major collision during the Permo-Triassic Songrim orogeny. The results provide robust evodence to consider the Imjingang belt as an extension of the the Qinling-Dabie-Sulu belt between the North and South China blocks.