• Title/Summary/Keyword: tectonic boundary

Search Result 62, Processing Time 0.017 seconds

Metamorphic P-T Paths from Devonian Pelitic Schists from the Pelham Dome, Massachusetts, USA (뉴잉글랜드 펠암돔 주변부 데본기 변성 이질암의 변성 온도-압력 경로)

  • 김형수
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.211-237
    • /
    • 2000
  • Major element zoning has been analyzed in garnet porphroblasts obtained from the Grt-St and Ky-Grt-St grade assemblages in Zones I on the northern flank of the Pelham Dome, north central Massachusetts. These porphyroblasts grew during multiple phases of deformation and meta-morphism revealed by the inclusion trail geometry plus the chemical zoning patterns within garnet porphyroblasts. Unusual zoning patterns, including zoning reversals and gradient changes in XMn, zlgzag patterns in Fe/(Fe +Mg) and staircase-shaped patterns in XCa, are coincident with textural truncations and other changes in microstructure within the garnet porphrublasts. Chemical variations in plagioclase, biotite, muscovite and staurolite combined with inclusion trail geometry and petrography reveal that the garnet zoning patterns are modified by combinations of the following. (1) Uni-and divariant reactions involving garnet consumption(Grt+ Chl+Ms=St+Bt+Qtz + $H_2$O) and production(St+Ms + Qtz= Bt+ Grt +A1$_2$$SiO_{5}$ + $H_2$O). (2) Deformation induced episudic ionit dissolution, preferential diffusion and re-distribution during foliation development. (3) P-T changes during growth of the porphyroblasts. The P-T paths combined with petrographic and inclusion trail morphology observations consist of two pattens; (1) heating/compression during NW-SE shortening; and (2) decompression with cooling during NNW-SSE shortening. Based on temperature-time(T-t) geochronological data and late-Paleozoic tectonic model, Alleghanian metamorphism, which is the result of heterogeneous shearing concentrated along the boundary between the Abalone Terrane(Pelham dome) and cover rocks(Bronson Hill Terrane), has produced Ky-St-Ms mineral assemblage during Pennsylvanian(290-300 Ma) in Shutesbury area. However, temperature of alleghanian metamorphism was not high enough to form garnet and staurolite in the Northfiled syncline area. Alleghanian metamorphism has affected only the matrix due to heterogeneous shearing in the study area.

  • PDF

Structural Geometry, Kinematics and Microstructures of the Imjingang Belt in the Munsan Area, Korea (임진강대 문산지역의 구조기하, 키네마틱스 및 미세구조 연구)

  • Lee, Hyunseo;Jang, Yirang;Kwon, Sanghoon
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.271-283
    • /
    • 2021
  • The Imjingang Belt in the middle-western Korean Peninsula has tectonically been correlated with the Permo-Triassic Qinling-Dabie-Sulu collisional belt between the North and South China cratons in terms of collisional tectonics. Within the belt, crustal-scale extensional ductile shear zones that were interpreted to be formed during collapsing stage with thrusts and folds were reported as evidence of collisional events by previous studies. In this study, we tried to understand the nature of deformation along the southern boundary of the belt in the Munsan area based on the interpretations of recently conducted structural analyses. To figure out the realistic geometry of the study area, the down-plunge projection was carried out based on the geometric relationships between structural elements from the detailed field investigation. We also conducted kinematic interpretations based on the observed shear sense indicators from the outcrops and the oriented thin-sections made from the mylonite samples. The prominent structures of the Munsan area are the regional-scale ENE-WSW striking thrust and the N-S trending map-scale folds, both in its hanging wall and footwall areas. Shear sense indicators suggest both eastward and westward vergence, showing opposite directions on each limb of the map-scale folds in the Munsan area. In addition, observed deformed microstructures from the biotite gneiss and the metasyenite of the Munsan area suggest that their deformation conditions are corresponding to the typical mid-crustal plastic deformation of the quartzofeldspathic metamorphic rocks. These microstructural results combined with the macro-scale structural interpretations suggest that the shear zones preserved in the Munsan area is mostly related to the development of the N-S trending map-scale folds that might be formed by flexural folding rather than the previously reported E-W trending crustal-scale extensional ductile shear zone by Permo-Triassic collision. These detailed examinations of the structures preserved in the Imjingang Belt can further contribute to solving the tectonic enigma of the Korean collisional orogen.