Purpose Radioimmunoassay implement quality control by systematizing the internal quality control system for quality assurance of test results. This study aims to contribute to the quality assurance of radioimmunoassay results and to implement systematic quality control by measuring the average CV of internal quality control and external quality control by plenty of institutions for reference when setting the laboratory's own acceptable range. Materials and Methods We measured the average CV of internal quality control and the bounce rate of more than 10.0% for a total of 42 items from October 2020 to December 2021. According to the CV result, we classified and compared the upper group (5.0% or less), the middle group (5.0~10.0%) and the lower group (10.0% or more). The bounce rate of 10.0% or more was compared by classifying the item of five or more institutions into tumor markers, thyroid hormones and other hormones. The average CV was measured by the overall average and standard deviation of the external quality control results for 28 items from the first quarter to the fourth quarter of 2021. In addition, the average CV was measured by the overall average and standard deviation of the proficiency results between institutions for 13 items in the first half and the second half of 2021. The average CV of internal quality control and external quality control was compared by item so we compared and analyzed the items that implement well to quality control and the items that require attention to quality control. Results As a result of measuring the precision average of internal quality control for 42 items of six institutions, the top group (5.0% or less) are Ferritin, HGH, SHBG, and 25-OH-VitD, while the bottom group (≤10.0%) are cortisol, ATA, AMA, renin, and estradiol. When comparing more than 10.0% bounce rate of CV for tumor markers, CA-125 (6.7%), CA-19-9 (9.8%) implemented well, while SCC-Ag (24.3%), CA-15-3 (26.7%) were among the items that require attention to control. As a result of comparing the bounce rate of more than 10.0% of CV for thyroid hormones examination, free T4 (2.1%), T3 (9.3%) showed excellent performance and AMA (39.6%), ATA (51.6%) required attention to control. When comparing the bounce rate of 10.0% or more of CV for other hormones, IGF-1 (8.8%), FSH (9.1%), prolactin (9.2%) showed excellent performance, however estradiol (37.3%), testosterone (37.7%), cortisol (44.4%) required attention to control. As a result of measuring the average CV of the whole institutions participating at external quality control for 28 items, HGH and SCC-Ag were included in the top group (≤10.0%), however ATA, estradiol, TSI, and thyroglobulin included in bottom group (≥30.0%). Conclusion As a result of evaluating 42 items of six institutions, the average CV was 3.7~12.2% showing a 3.3 times difference between the upper group and the lower group. Cortisol, ATA, AMA, Renin and estradiol tests with high CV will require continuous improvement activities to improve precision. In addition, we measured and compared the overall average CV of the internal quality control, the external quality control and the proficiency between institutions participating of six institutions for 41 items excluding HBs-Ab. As a result, ATA, AMA, Renin and estradiol belong to the same subgroup so we require attention to control and consider setting a higher acceptable range. It is recommended to set and control the acceptable range standard of internal quality control CV in consideration of many things in the laboratory due to the different reagents and instruments, and the results vary depending on the test's proficiency and quality control materials. It is thought that the accuracy and reliability of radioimmunoassay results can be improved if systematic quality control is implemented based on the set acceptable range.
Our society has long been talking about necessity for innovation. Since companies in particular need to carry out business innovation in their overall processes, they have attempted to apply many innovation factors on sites and become to pay more attention to their innovation. In order to achieve this goal, companies has applied various information technologies (IT) on sites as a means of innovation, and consequently IT have been greatly developed. It is natural for the field of IT to have faced another revolution which is called cloud computing, which is expected to result in innovative changes in software application via the Internet, data storing, the use of devices, and their operations. As a vehicle of innovation, cloud computing is expected to lead the changes and advancement of our society and the business world. Although many scholars have researched on a variety of topics regarding the innovation via IT, few studies have dealt with the issue of could computing as IT. Thus, the purpose of this paper is to set the variables of innovation attributes based on the previous articles as the characteristic variables and clarify how these variables affect "Performance Expectancy" of companies and the intention of using cloud computing. The result from the analysis of data collected in this study is as follows. The study utilized a research model developed on the innovation diffusion theory to identify influences on the adaptation and spreading IT for cloud computing services. Second, this study summarized the characteristics of cloud computing services as a new concept that introduces innovation at its early stage of adaptation for companies. Third, a theoretical model is provided that relates to the future innovation by suggesting variables for innovation characteristics to adopt cloud computing services. Finally, this study identified the factors affecting expectation and the intention to use the cloud computing service for the companies that consider adopting the cloud computing service. As the parameter and dependent variable respectively, the study deploys the independent variables that are aligned with the characteristics of the cloud computing services based on the innovation diffusion model, and utilizes the expectation for performance and Intention to Use based on the UTAUT theory. Independent variables for the research model include Relative Advantage, Complexity, Compatibility, Cost Saving, Trialability, and Observability. In addition, 'Acceptance for Adaptation' is applied as an adjustment variable to verify the influences on the expected performances from the cloud computing service. The validity of the research model was secured by performing factor analysis and reliability analysis. After confirmatory factor analysis is conducted using AMOS 7.0, the 20 hypotheses are verified through the analysis of the structural equation model, accepting 12 hypotheses among 20. For example, Relative Advantage turned out to have the positive effect both on Individual Performance and on Strategic Performance from the verification of hypothesis, while it showed meaningful correlation to affect Intention to Use directly. This indicates that many articles on the diffusion related Relative Advantage as the most important factor to predict the rate to accept innovation. From the viewpoint of the influence on Performance Expectancy among Compatibility and Cost Saving, Compatibility has the positive effect on both Individual Performance and on Strategic Performance, while it showed meaningful correlation with Intention to Use. However, the topic of the cloud computing service has become a strategic issue for adoption in companies, Cost Saving turns out to affect Individual Performance without a significant influence on Intention to Use. This indicates that companies expect practical performances such as time and cost saving and financial improvements through the adoption of the cloud computing service in the environment of the budget squeezing from the global economic crisis from 2008. Likewise, this positively affects the strategic performance in companies. In terms of effects, Trialability is proved to give no effects on Performance Expectancy. This indicates that the participants of the survey are willing to afford the risk from the high uncertainty caused by innovation, because they positively pursue information about new ideas as innovators and early adopter. In addition, they believe it is unnecessary to test the cloud computing service before the adoption, because there are various types of the cloud computing service. However, Observability positively affected both Individual Performance and Strategic Performance. It also showed meaningful correlation with Intention to Use. From the analysis of the direct effects on Intention to Use by innovative characteristics for the cloud computing service except the parameters, the innovative characteristics for the cloud computing service showed the positive influence on Relative Advantage, Compatibility and Observability while Complexity, Cost saving and the likelihood for the attempt did not affect Intention to Use. While the practical verification that was believed to be the most important factor on Performance Expectancy by characteristics for cloud computing service, Relative Advantage, Compatibility and Observability showed significant correlation with the various causes and effect analysis. Cost Saving showed a significant relation with Strategic Performance in companies, which indicates that the cost to build and operate IT is the burden of the management. Thus, the cloud computing service reflected the expectation as an alternative to reduce the investment and operational cost for IT infrastructure due to the recent economic crisis. The cloud computing service is not pervasive in the business world, but it is rapidly spreading all over the world, because of its inherited merits and benefits. Moreover, results of this research regarding the diffusion innovation are more or less different from those of the existing articles. This seems to be caused by the fact that the cloud computing service has a strong innovative factor that results in a new paradigm shift while most IT that are based on the theory of innovation diffusion are limited to companies and organizations. In addition, the participants in this study are believed to play an important role as innovators and early adapters to introduce the cloud computing service and to have competency to afford higher uncertainty for innovation. In conclusion, the introduction of the cloud computing service is a critical issue in the business world.
Nowadays, it is common that most consumers are purchasing goods in e-stores. The e-stores eager to attract, revisit, retain, and finally convert them into loyal customers. The e-store marketers have planned and executed numerous marketing efforts. As one of the marketing activities, e-store managers attempt to build web sites that meet customers' functional and psychological needs. A wide array of studies has been done to identify factors that could affect customers' response of web sites. Majority of studies were conducted to verify technology-related and functional variables of the website which facilitate transactions and enhance customer responses such as purchase intention and website loyalty. However, there has been little research on the external cues of website and psychological variables of consumer that could have positive influences on customer response. The purpose of this study is to investigate the influence of e-store personality on e-store loyalty through mediating variables such as e-store identification, e-store trust, and e-store engagement. The authors of this study develop the model and set up the six main hypotheses and a set of sub-hypotheses based on a literature review, shown in
To support business decision making, interests and efforts to analyze and use transaction data in different perspectives are increasing. Such efforts are not only limited to customer management or marketing, but also used for monitoring and detecting fraud transactions. Fraud transactions are evolving into various patterns by taking advantage of information technology. To reflect the evolution of fraud transactions, there are many efforts on fraud detection methods and advanced application systems in order to improve the accuracy and ease of fraud detection. As a case of fraud detection, this study aims to provide effective fraud detection methods for auction exception agricultural products in the largest Korean agricultural wholesale market. Auction exception products policy exists to complement auction-based trades in agricultural wholesale market. That is, most trades on agricultural products are performed by auction; however, specific products are assigned as auction exception products when total volumes of products are relatively small, the number of wholesalers is small, or there are difficulties for wholesalers to purchase the products. However, auction exception products policy makes several problems on fairness and transparency of transaction, which requires help of fraud detection. In this study, to generate fraud detection rules, real huge agricultural products trade transaction data from 2008 to 2010 in the market are analyzed, which increase more than 1 million transactions and 1 billion US dollar in transaction volume. Agricultural transaction data has unique characteristics such as frequent changes in supply volumes and turbulent time-dependent changes in price. Since this was the first trial to identify fraud transactions in this domain, there was no training data set for supervised learning. So, fraud detection rules are generated using outlier detection approach. We assume that outlier transactions have more possibility of fraud transactions than normal transactions. The outlier transactions are identified to compare daily average unit price, weekly average unit price, and quarterly average unit price of product items. Also quarterly averages unit price of product items of the specific wholesalers are used to identify outlier transactions. The reliability of generated fraud detection rules are confirmed by domain experts. To determine whether a transaction is fraudulent or not, normal distribution and normalized Z-value concept are applied. That is, a unit price of a transaction is transformed to Z-value to calculate the occurrence probability when we approximate the distribution of unit prices to normal distribution. The modified Z-value of the unit price in the transaction is used rather than using the original Z-value of it. The reason is that in the case of auction exception agricultural products, Z-values are influenced by outlier fraud transactions themselves because the number of wholesalers is small. The modified Z-values are called Self-Eliminated Z-scores because they are calculated excluding the unit price of the specific transaction which is subject to check whether it is fraud transaction or not. To show the usefulness of the proposed approach, a prototype of fraud transaction detection system is developed using Delphi. The system consists of five main menus and related submenus. First functionalities of the system is to import transaction databases. Next important functions are to set up fraud detection parameters. By changing fraud detection parameters, system users can control the number of potential fraud transactions. Execution functions provide fraud detection results which are found based on fraud detection parameters. The potential fraud transactions can be viewed on screen or exported as files. The study is an initial trial to identify fraud transactions in Auction Exception Agricultural Products. There are still many remained research topics of the issue. First, the scope of analysis data was limited due to the availability of data. It is necessary to include more data on transactions, wholesalers, and producers to detect fraud transactions more accurately. Next, we need to extend the scope of fraud transaction detection to fishery products. Also there are many possibilities to apply different data mining techniques for fraud detection. For example, time series approach is a potential technique to apply the problem. Even though outlier transactions are detected based on unit prices of transactions, however it is possible to derive fraud detection rules based on transaction volumes.
In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.
Brand has received much attention from considerable marketing research. When consumers consume product or services, they are exposed to a lot of brand related stimuli. These contain brand personality, brand experience, brand identity, brand communications and so on. A special kind of new crisis occasionally confronting companies' brand management today is the brand related rumor. An important influence on consumers' purchase decision making is the word-of-mouth spread by other consumers and most decisions are influenced by other's recommendations. In light of this influence, firms have reasonable reason to study and understand consumer-to-consumer communication such as brand rumor. The importance of brand rumor to marketers is increasing as the number of internet user and SNS(social network service) site grows. Due to the development of internet technology, people can spread rumors without the limitation of time, space and place. However relatively few studies have been published in marketing journals and little is known about brand rumors in the marketplace. The study of rumor has a long history in all major social science. But very few studies have dealt with the antecedents and consequences of any kind of brand rumor. Rumor has been generally described as a story or statement in general circulation without proper confirmation or certainty as to fact. And it also can be defined as an unconfirmed proposition, passed along from people to people. Rosnow(1991) claimed that rumors were transmitted because people needed to explain ambiguous and uncertain events and talking about them reduced associated anxiety. Especially negative rumors are believed to have the potential to devastate a company's reputation and relations with customers. From the perspective of marketer, negative rumors are considered harmful and extremely difficult to control in general. It is becoming a threat to a company's sustainability and sometimes leads to negative brand image and loss of customers. Thus there is a growing concern that these negative rumors can damage brands' reputations and lead them to financial disaster too. In this study we aimed to distinguish antecedents of brand rumor transmission and investigate the effects of brand rumor characteristics on rumor spread intention. We also found key components in personal acceptance of brand rumor. In contextualist perspective, we tried to unify the traditional psychological and sociological views. In this unified research approach we defined brand rumor's characteristics based on five major variables that had been found to influence the process of rumor spread intention. The five factors of usefulness, source credibility, message credibility, worry, and vividness, encompass multi level elements of brand rumor. We also selected product involvement as a control variable. To perform the empirical research, imaginary Korean 'Kimch' brand and related contamination rumor was created and proposed. Questionnaires were collected from 178 Korean samples. Data were collected from college students who have been experienced the focal product. College students were regarded as good subjects because they have a tendency to express their opinions in detail. PLS(partial least square) method was adopted to analyze the relations between variables in the equation model. The most widely adopted causal modeling method is LISREL. However it is poorly suited to deal with relatively small data samples and can yield not proper solutions in some cases. PLS has been developed to avoid some of these limitations and provide more reliable results. To test the reliability using SPSS 16 s/w, Cronbach alpha was examined and all the values were appropriate showing alpha values between .802 and .953. Subsequently, confirmatory factor analysis was conducted successfully. And structural equation modeling has been used to analyze the research model using smartPLS(ver. 2.0) s/w. Overall, R2 of adoption of rumor is .476 and R2 of intention of rumor transmission is .218. The overall model showed a satisfactory fit. The empirical results can be summarized as follows. According to the results, the variables of brand rumor characteristic such as source credibility, message credibility, worry, and vividness affect argument strength of rumor. And argument strength of rumor also affects rumor intention. On the other hand, the relationship between perceived usefulness and argument strength of rumor is not significant. The moderating effect of product involvement on the relations between argument strength of rumor and rumor W.O.M intention is not supported neither. Consequently this study suggests some managerial and academic implications. We consider some implications for corporate crisis management planning, PR and brand management. This results show marketers that rumor is a critical factor for managing strong brand assets. Also for researchers, brand rumor should become an important thesis of their interests to understand the relationship between consumer and brand. Recently many brand managers and marketers have focused on the short-term view. They just focused on strengthen the positive brand image. According to this study we suggested that effective brand management requires managing negative brand rumors with a long-term view of marketing decisions.
. First of all, hypothesis 1 is partially supported because sub-hypothesis 1-1 and 1-2 are supported, whereas sub-hypothesis 1-3, 1-4, and 1-5 are rejected. Specifically, it reveals that warmth and sophistication dimensions in e-store personality have positive influence on e-store identification, however, activity, progressiveness, and strictness does not have any significant relationship on e-store identification. Secondly, hypothesis 2 was supported. Therefore, it can be said that e-store identification has a positive impact on e-store trust. Thirdly, hypothesis 3 is also supported. Hence, there is a positive relationship between e-store identification and e-store engagement. Fourthly, hypothesis 4 is supported too. e-store identification has a positive influence on e-store loyalty. Fifthly, hypothesis 5 is also accepted. This indicates that e-store trust is a precedent variable which positively affects e-store loyalty. Lastly, it reveals that e-store engagement has a positive impact on e-store loyalty. Therefore, hypothesis 6 is supported. The findings of the study imply that some dimensions of e-store personality have a positive influence on e-store identification, and that e-store identification has direct and indirect influence on e-store loyalty through e-store trust and e-store engagement positively. These results also suggest that the e-store identification in e-store personality is a precedent variable which positively affects e-store loyalty directly and indirectly through e-store trust and engagement as a mediating variable. Therefore, e-store marketers need to implement website strategy based on e-store personality, e-store identification, e-store trust, and e-store engagement to meet customers' psychological needs and enhance e-store loyalty. Finally, the limitations and future study directions based on this study are discussed.
A Study on the Application of Outlier Analysis for Fraud Detection: Focused on Transactions of Auction Exception Agricultural Products
(부정 탐지를 위한 이상치 분석 활용방안 연구 : 농수산 상장예외품목 거래를 대상으로)
A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm
(Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)
Consumer's Negative Brand Rumor Acceptance and Rumor Diffusion
(소비자의 부정적 브랜드 루머의 수용과 확산)
이메일무단수집거부
이용약관
제 1 장 총칙
제 2 장 이용계약의 체결
제 3 장 계약 당사자의 의무
제 4 장 서비스의 이용
제 5 장 계약 해지 및 이용 제한
제 6 장 손해배상 및 기타사항
Detail Search
Image Search
(β)