• Title/Summary/Keyword: technology absorption capacity

Search Result 273, Processing Time 0.035 seconds

Functional and Film-forming Properties of Fractionated Barley Proteins

  • Cho, Seung-Yong;Rhee, Chul
    • Food Science and Biotechnology
    • /
    • v.18 no.4
    • /
    • pp.889-894
    • /
    • 2009
  • Barley proteins are expected to have unique functional properties due to their high content of alcohol soluble protein, hordein. Since the barley proteins obtained by conventional isoelectric precipitation method cannot represent hordein fraction, barley proteins were fractionated to albumin, globulin, glutelin, and hordein with respect to extraction solvents. Functional properties and film-forming properties of solubility-fractionated barley proteins were investigated to explore their potential for human food ingredient and industrial usage. The 100 g of total barley protein comprised 5 g albumin, 23 g globulin, 45 g glutelin, and 27 g hordein. Water-binding capacities of barley protein isolates ranged from 140-183 mL water/100 g solid. Hordein showed the highest oil absorption capacity (136 mL oil/100 g), and glutelin showed the highest gelation property among the fractionated proteins. In general, the barley protein fractions formed brittle and weak films as indicated by low tensile strength (TS) and percent elongation at break (E) values. The salt-soluble globulin fraction produced film with the lowest TS value. Although films made from glutelin and hordein were dark-colored and had lower E values, they could be used as excellent barriers against water transmission.

Corticosterone Administration Alters Small Intestinal Morphology and Function of Broiler Chickens

  • Hu, Xiaofei;Guo, Yuming
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.12
    • /
    • pp.1773-1778
    • /
    • 2008
  • Two experiments were carried out to study the effects of corticosterone (CORT) administration on intestinal morphology and function of broilers. In both experiments, birds were randomly divided into two equal groups. One group was the control group (CTRL), and the birds were fed with a basal diet. The other was the experimental group (CORT), and the birds were fed with the basal diet plus 30 mg of CORT/kg diet. At 21 days of age, performance, morphological characteristics of intestine, D-xylose level in plasma, activities of digestive enzymes in digesta, digestibility of nutrients and 5-bromo-2-deoxyuridine (BrdUrd)-labeling index of intestinal epithelial cells were determined. CORT administration decreased feed intake, daily gain and feed conversion ratio (p<0.05). CORT also decreased duodenal and jejunal villus height (p<0.05) as well as crypt depth (p<0.05). The D-xylose level in plasma of CORT-treated broilers was lower than that of the control (p<0.05). CORT treatment caused a decrease in apparent digestibility of protein (p<0.05), whereas fat and starch apparent digestibilities were unaffected (p>0.05). CORT administration increased activities of trypsin and amylase (p<0.05), and decreased BrdUrd-labeling index of duodenal and jejunal epithelial cells (p<0.05). In conclusion, CORT administration impaired the normal morphology and absorptive capacity of the small intestine of broiler chickens.

Effects of 2-Phase Matrix Structure on Fatigue Limit of High Strength Ductile Iron (고강도 구상흑연주철의 피로한도에 미치는 2상 기지조직의 영향)

  • Kim, Jin-Hak;Ji, Jueng-Keun;Kim, Min-Gun
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.75-79
    • /
    • 1999
  • Rotary bending fatigue tests were performed to investigate the effects of 2-phase matrix structure on fatigue limit with prepared specimens in high strength ductile irons. Two types of the specimens with different microstructures have been used. Series A has sorbite and series B has bainite. Fatigue limits of both specimens are improved comparing with as cast specimen. The fatigue limit is higher in series B than in series A. The reason why the fatigue limit of series A shows inferiority to that of series B is due to the transition of micro fatigue cracks to mesocrack occurs very rapidly, so increased stress intensity factor drives the fatigue crack growth. The higher fatigue limit of series B which has bainite is caused by the ${\gamma}$ layer contained in microstructure impede the rapid growth of micro fatigue crack to mesocrack and ${\alpha}$ layer around graphite has the higher capacity for the absorption of plastic deformation energy than sorbite.

  • PDF

Quality Characteristics of Rice Noodles with Added Allium victorialis Powder (산마늘 분말을 첨가한 쌀국수의 품질특성)

  • Park, Geum-Soon;Kim, Ji-Young
    • Korean journal of food and cookery science
    • /
    • v.26 no.6
    • /
    • pp.772-780
    • /
    • 2010
  • This study investigated the quality of rice noodles containing different amounts of Allium victorialis powder. Rice noodles were prepared at ratios of 1, 3 and 5% Allium victorialis powder based on flour weight. The rice noodles containing Allium victorialis powder had higher moisture contents than that of control, whereas the levels of water binding capacity were lower. Regarding the cooking properties of the rice noodles, weight and water absorption were significantly lower in the 1, 3% Allium victorialis rice noodles compared to control. : 5% Allium victorialis rice noodle showed the highest score. Further, volume of the 5% Allium victorialis rice noodle showed the highest score. Allium victorialis rice noodles had lower L-values and a-values than those of control, and these values decreased with increasing amounts of Allium victorialis powder while the b-value increased. Sensory evaluation showed that high quality cooked noodles could be produced by 1, 3% inclusion of Allium victorialis powder. The pH of the rice noodles decreased gradually over 15 days of storage time. Rice noodles with added Allium victorialis powder had lower total and fungus plate counts than that of control during 15 days of storage.

Succinylation of Myofibrillar Protein of PSE(pale, soft, exudative) Porcine Muscle and it's Functional Characteristics (PSE 돈육으로 부터 추출한 근원섬유단백질의 석시닐화와 그 기능적 특성)

  • Sung, Sam-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.353-357
    • /
    • 1984
  • The myofibril prepared from PSE (pale, soft, exudative) porcine meat was modified by reacting with succinic anhydride and the chemical and functional properties of modified myofibrils were investigated. $No\;Ca^{2+}-and\;Mg^{2+}-ATPase$ activity were observed irrespective of the degree of succinylation. Isoelectric point of the succinylated myofibril changed to around pH 3 from the pH 5 of unmodified myofibril. Salt soluble property was not affected by changing the salt concentration. The modified myofibril in aqueous solution did not coagulate during heating at $98^{\circ}C$ for 10 min. Water absorption ability was not improved but emulsion capacity was improved a little by succinylation.

  • PDF

Experimental study on effect of EBRIG shear strengthening method on the behavior of RC beams

  • Shomali, Amir;Mostofinejad, Davood;Esfahani, Mohammad Reza
    • Advances in concrete construction
    • /
    • v.8 no.2
    • /
    • pp.145-154
    • /
    • 2019
  • The present experimental study addresses the structural response of reinforced concrete (RC) beams strengthened in shear. Thirteen RC beams were divided into four different sets to investigate the effect of transverse and longitudinal steel reinforcement ratios, concrete compressive strength change and orientation for installing carbon fiber-reinforced polymer (CFRP) laminates. Then, we employed a shear strengthening solution through externally bonded reinforcement in grooves (EBRIG) and externally bonded reinforcement (EBR) techniques. In this regard, rectangular beams of $200{\times}300{\times}2000mm$ dimensions were subjected to the 4-point static loading condition and their load-displacement curves, load-carrying capacity and ductility changes were compared. The results revealed that using EBRIG method, the gain percentage augmented with the increase in the longitudinal reinforcement ratio. Also, in the RC beams with stirrups, the gain in shear strength decreased as transverse reinforcement ratio increased. The results also revealed that the shear resistance obtained by the experimental tests were in acceptable agreement with the design equations. Besides, the results of this research indicated that using the EBRIG system through vertical grooves in RC beams with and without stirrups caused the energy absorption to increase about 85% and 97%, respectively, relative to the control.

Structural performance of concrete containing fly ash based lightweight angular aggregates

  • Pati, Pritam K.;Sahu, Shishir K.
    • Advances in concrete construction
    • /
    • v.13 no.4
    • /
    • pp.291-305
    • /
    • 2022
  • The present investigation deals with the production of the innovative lightweight fly ash angular aggregates (FAA) first time in India using local class 'F' fly ash, its characterization, and exploring the potential for its utilization as alternative coarse aggregates in structural concrete applications. Two types of aggregates are manufactured using two different kinds of binders. The manufacturing process involves mixing fly ash, binder, and water, followed by the briquetting process, sintering and crushing them into suitable size aggregates. Tests are conducted on fly ash angular aggregates to measure their physical properties such as crushing value, impact value, specific gravity, water absorption, bulk density, and percentage of voids. Study shows that the physical parameters are significantly enhanced as compared to commercially available fly ash pellets (FAP). The developed FAA are used in concrete vis-à-vis conventional granite aggregates and FAP to determine their compressive, split tensile and flexural strengths. Although being lightweight, the strength parameters for concrete containing FAA are well compared with conventional concrete. This might be due to the high pozzolanic reaction between fly ash angular aggregates and cement paste. Also, RCC beams are cast and the load-deflection behaviour and ultimate load carrying capacity signify that FAA can be suitably used for RCC construction. Hence, the utilization of fly ash as angular aggregates can reduce the dead load of the structure and at the same time serves as a solution for fly ash disposal and mineral depletion problem.

Ethylene Gas Adsorption of Clay-Woodceramics from 3 layers-clay-woodparticleboard

  • Lee, Hwa Hyoung;Kang, Seog-Goo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.83-88
    • /
    • 2003
  • The woodceramics are porous amorphous carbon and glassy carbon composite materials. Woodceramics attracted a lot of attention in recent years because they are environmentally friendly and because of their unique functional characteristics such as catalysis, moisture absorption, deodorization, purification, carrier for microbial activity, specific stiffness, corrosion and friction resistance, and their electromagnetic shielding capacity. In this paper, we made new products of clay-woodceramics to investigate the industrial analysis and ethylene gas adsorption for basic data of building- and packging- materials keeping fruit fresh for a long time. Clay-woodceramics were carbonized for 3 h of heating in a special furnace under a gas flow of nitrogen(15 ml/min.) from 3 layers-clay-woodparticleboard made from pallet waste wood, phenol- formaldehyde resin(hereafter PF, Non volatile content:52%, resin content 30%), and clay(10%, 20% and 30%). Carbonization temperature was 400℃, 600℃ and 800℃. Experimental results shows that the higher the carbonization temperature, the higher the fixed carbon and the lower the volatile contents. The higher the clay content, the more the ash content. The higher the carbonization temperature, the more the ethylene gas adsorption. Carbonization temperature of 800℃ gave the best reslts as same as that of white charcoal and activated carbon.(800℃-clay-woodceramic: 5.36 ppm, white charcoal: 5.66 ppm, activated carbon: 5.79 ppm) The clay contents did not make difference of ethylene gas adsoption.

Experimental behaviour of circular concrete filled steel tube columns under lateral cyclic loading

  • Cao, Vui Van;Vo, Cuong Trung;Nguyen, Phuoc Trong;Ashraf, Mahmud
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.445-460
    • /
    • 2021
  • This study experimentally explored the behaviour of 12 concrete filled steel tube (CFST) and steel tube columns subjected to lateral cyclic loading. The L/D ratio was 12.3 while D/t ratios were 45.4, 37.8 and 32.4, classifying these 12 specimens into 3 groups. Each group included 3 CFST and 1 steel tube columns and were tested to failure. The experimental results indicated that CFST specimens reached the state of 'collapse prevention' (drift 4%) prior to the occurrence of local buckling. Strength degradation of CFST specimens did not occur up to the failure by buckling. This showed the favourable characteristic of CFST columns in preventing collapse of structures subjected to earthquakes. The high energy absorption capability in the post collapse limit state was appropriate for dissipating energy in structures. Compared to steel tube columns, CFST columns delayed local buckling and prevented inward buckling. Consequently, CFST columns exhibited their outstanding seismic performance in terms of the increased ultimate resistance, capacity to sustain 2-3 additional load cycles and significantly higher drift. A simple and reasonably accurate model was proposed to predict the ultimate strength of CFST columns under lateral cyclic loading.

Molybdenum isotopes separation using squared-off optimized cascades

  • Mahdi Aghaie;Valiyollah Ghazanfari
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3291-3300
    • /
    • 2023
  • Recently molybdenum alloys have been introduced as accident tolerating materials for cladding of fuel rods. Molybdenum element has seven stable isotopes with different neutron absorption cross section used in various fields, including nuclear physics and radioisotope production. This study presents separation approaches for all intermediate isotopes of molybdenum element by squared-off cascades using a newly developed numerical code with Salp Swarm Algorithm (SSA) optimization algorithm. The parameters of cascade including feed flow rate, feed entry stage, cascade cut, input feed flow rate to gas centrifuges (GCs), and cut of the first stage are optimized to maximize both isotope recovery and cascade capacity. The squared off and squared cascades are studied, and the efficiencies are compared. The results obtained from the optimization showed that for the selected squared off cascade, Mo94 in four separation steps, Mo95 in five steps, Mo96 in six steps, Mo97 in seven steps, and Mo98 in two steps are separated to the desired concentrations. The highest recovery factor is obtained 63% for Mo94 separation and lowest recovery factor is found 45% for Mo95.