• Title/Summary/Keyword: technological tool

Search Result 237, Processing Time 0.023 seconds

An Investigation into the Role of Technostress in Information Security Context (기술스트레스가 정보보안에 미치는 영향에 관한 연구)

  • Park, Chul-Ju;Yim, Myung-Seong
    • Journal of Digital Convergence
    • /
    • v.10 no.5
    • /
    • pp.37-51
    • /
    • 2012
  • The purpose of this study is to approach information security from a more comprehensive perspective. Particularly, information countermeasures includes a technological tool for end users, thereby increasing the end users' technological stresses. Based on the technostress framework, we investigate a effect of security awareness training on technostress, and also examine a effect of technostress on the persistent security compliance. Results showed that security awareness training influenced on techno-overload and techno-uncertainty. We also found that techno-overload and techno-uncertainty have a significant effect on the persistent security compliance. Conclusion and implications are discussed.

Development of a Grid-based Framework for High-Performance Scientific Knowledge Discovery (그리드 기반의 고성능 과학기술지식처리 프레임워크 개발)

  • Jeong, Chang-Hoo;Choi, Sung-Pil;Yoon, Hwa-Mook;Choi, Yun-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.877-885
    • /
    • 2009
  • In this paper, we propose the SINDI-Grid which is a high-performance framework for scientific and technological knowledge discovery using the grid computing. By using the advantages of the grid computing providing data repository of large-volume and high-speed computing power, the SINDI-Grid framework provides a variety of grid services for distributed data analysis and scientific knowledge processing. And the SINDI-Workflow tool exploits these services so that performs the design and execution for scientific and technological knowledge discovery applications which integrate various information processing algorithms.

Soft computing-based estimation of ultimate axial load of rectangular concrete-filled steel tubes

  • Asteris, Panagiotis G.;Lemonis, Minas E.;Nguyen, Thuy-Anh;Le, Hiep Van;Pham, Binh Thai
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.471-491
    • /
    • 2021
  • In this study, we estimate the ultimate load of rectangular concrete-filled steel tubes (CFST) by developing a novel hybrid predictive model (ANN-BCMO) which is a combination of balancing composite motion optimization (BCMO) - a very new optimization technique and artificial neural network (ANN). For this aim, an experimental database consisting of 422 datasets is used for the development and validation of the ANN-BCMO model. Variables in the database are related with the geometrical characteristics of the structural members, and the mechanical properties of the constituent materials (steel and concrete). Validation of the hybrid ANN-BCMO model is carried out by applying standard statistical criteria such as root mean square error (RMSE), coefficient of determination (R2), and mean absolute error (MAE). In addition, the selection of appropriate values for parameters of the hybrid ANN-BCMO is conducted and its robustness is evaluated and compared with the conventional ANN techniques. The results reveal that the new hybrid ANN-BCMO model is a promising tool for prediction of the ultimate load of rectangular CFST, and prove the effective role of BCMO as a powerful algorithm in optimizing and improving the capability of the ANN predictor.

Optimal Carbon Upcycling Technology Selection Method Considering Technology and Market (기술 및 시장을 고려한 최적 탄소자원화 기술 선정방법)

  • Ji Hyun Lee;Seong Jegarl;Jieun Jo
    • New & Renewable Energy
    • /
    • v.19 no.1
    • /
    • pp.41-52
    • /
    • 2023
  • Various carbon upcycling technologies have been proposed and are under development to achieve Korea's carbon neutrality target. Many chemical reactions are under development through various chemical reaction pathways, and different technological maturity levels are shown for each country and company. In this situation, it is essential to establish investment decisions such as research funds and human resources allocation through technological and economic analysis for close commercialization technologies and basic technologies with low technology readiness levels (TRL). Therefore, in this study, the technology development priority for developing carbon upcycling items was selected according to the domestic Carbon Capture & Utilization (CCU) technology roadmap using the stakeholder selection tool released by EU CarbonNext. As a result of the analysis, the TRL level of Korea's major carbon upcycling technologies was analyzed to be lower than that of other carbon resource technologies, and it was considered desirable to invest in mineral carbonization technologies among various candidate technologies.

Factors Affecting the Application of Strategy Management Accounting in Vietnamese Logistics Enterprises

  • VU, Thi Kim Anh;DAM, Bich Ha;HA, Thi Thuy Van
    • Journal of Distribution Science
    • /
    • v.20 no.1
    • /
    • pp.27-39
    • /
    • 2022
  • Purpose This research aims to investigate factors affecting the application of strategic management accounting in Vietnamese Logistics Enterprises. Design/Methodology/Approach: Quantitative research was conducted and data was collected by sending questionnaires to 188 accountants and directors from Vietnamese Logistics Enterprises (including, transportation, warehousing and forwarding). 5 factors (namely: size and organizational structure, technological advancement, and strategic management accounting implementing costs) were selected to measure the application of strategic management accounting (SMA) in Vietnamese Logistics Enterprises (LEs) through correlation and regression analysis. Results: The empirical findings show that there exists a significant association between these factors and the SMA application. LEs have strongly supported the application of SMA as a tool to provide information for making their strategic decisions. The factors including size and organizational structure, technological advancement, SMA implementing c osts, and strategy positively impact the SMA application in both financial and non-financial aspects. This finding helps the adm inistrators realize the importance of SMA. Conclusions: This study provided an overview of SMA application and its benefits to enterprises. It helps managers have a better understanding of SMA and future directions for application. Moreover, the research results will be useful for managers to identify factors influencing their SMA practices and improve the current management process applied in organizations.

Fire resistance prediction of slim-floor asymmetric steel beams using single hidden layer ANN models that employ multiple activation functions

  • Asteris, Panagiotis G.;Maraveas, Chrysanthos;Chountalas, Athanasios T.;Sophianopoulos, Dimitrios S.;Alam, Naveed
    • Steel and Composite Structures
    • /
    • v.44 no.6
    • /
    • pp.769-788
    • /
    • 2022
  • In this paper a mathematical model for the prediction of the fire resistance of slim-floor steel beams based on an Artificial Neural Network modeling procedure is presented. The artificial neural network models are trained and tested using an analytical database compiled for this purpose from analytical results based on FEM. The proposed model was selected as the optimum from a plethora of alternatives, employing different activation functions in the context of Artificial Neural Network technique. The performance of the developed model was compared against analytical results, employing several performance indices. It was found that the proposed model achieves remarkably improved predictions of the fire resistance of slim-floor steel beams. Moreover, based on the optimum developed AN model a closed-form equation for the estimation of fire resistance is derived, which can prove a useful tool for researchers and engineers, while at the same time can effectively support the teaching of this subject at an academic level.

An Exploratory Study of Developing a Measurement Tool for the Quality of Information Commons (정보공유공간의 품질 측정지표 개발에 관한 탐색적 연구)

  • Park, Ji-Hong;Key, Sun-Ah
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.46 no.4
    • /
    • pp.5-25
    • /
    • 2012
  • The purpose of this study is to develop a measurement tool for the quality of information commons. Information commons is a physical, technological, social, and intellectual place where library users can experience various educational, research, and cultural activities. It is recently gaining popularity and several libraries have implemented it to help users share knowledge and interact with each other. It also intends to provide a place for collaboration, learning, and rest. Despite its benefits and usefulness, there is no measurement tool explicitly designed for the quality of information commons. This study used in-depth personal interview, compared prior studies, and conducted a pilot study to elicit library users' perceptions on information commons and factors influencing on the perceived quality of information commons. Groups of initial items were emerged through classifying and clustering key concepts in the data. Then, the validity of the items were verified through a pilot study. The findings of this study will be useful for developing more reliable and valid survey measurement tool.

Machinability investigation and sustainability assessment in FDHT with coated ceramic tool

  • Panda, Asutosh;Das, Sudhansu Ranjan;Dhupal, Debabrata
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.681-698
    • /
    • 2020
  • The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade die steel D3 with PVD-TiN coated (Al2O3-TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi's L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique (response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable manufacturing in both research field and industrial practice.

An Analytical Study on the Effects of Structural Reinforcement for Laser Multi-tasking Machine (레이저 복합 가공기의 구조보강의 영향 평가에 관한 해석적 연구)

  • Shin, J.H.;Lee, C.M.;Chung, W.J.;Kim, J.S.;Lee, W.C.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.3
    • /
    • pp.37-43
    • /
    • 2007
  • Recent technological developments in machine tools have been focused on high speed, low vibration machining and high precision machining. And the concern with multi-functional machining has been increased for the last several years. Multi-tasking machines are widely used in machine tool industries. Laser multi-tasking machine has been developed for high precision and fewer vibration machining. The purpose of this study is to evaluate the effects of structural reinforcement on Laser multi-tasking machine which is comprehensively combined turning center and laser machine. Up to date, for the structural stability evaluation of a multi-tasking machine, the analysis model has been considered only the weight of the upper parts. The positions of upper parts on multi-tasking machine have not been considered in the model. So, the results of the present FE model have revealed some difference with measurement data in case of multi-tasking machine. Design of the machine and structural analysis is carried out by FEM simulation using the commercial software CATIA V5. In the result of the structural analysis, effectiveness of reinforcement of the bed was confirmed.

Influence of failed blade-pitch-control system to FOWT by aero-elastic-control-floater-mooring coupled dynamic analysis

  • Bae, Yoon Hyeok;Kim, Moo-Hyun
    • Ocean Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.295-307
    • /
    • 2013
  • More FOWTs (floating offshore wind turbines) will be installed as relevant regulations and technological hurdles are removed in the coming years. In the present study, a numerical prediction tool has been developed for the fully coupled dynamic analysis of FOWTs in time domain including aero-loading, tower elasticity, blade-rotor dynamics and control, mooring dynamics, and platform motions so that the influence of rotor-control dynamics on the hull-mooring performance and vice versa can be assessed. The developed coupled analysis program is applied to Hywind spar design with 5 MW turbine. In case of spar-type floaters, the control strategy significantly influences the hull and mooring dynamics. If one of the control systems fails, the entire dynamic responses of FOWT can be significantly different. Therefore, it is important to maintain various control systems in a good operational condition. In this regard, the effects of failed blade pitch control system on FOWT performance including structural and dynamic responses of blades, tower, and floater are systematically investigated. Through this study, it is seen that the failure of one of the blade pitch control system can induce significant dynamic loadings on the other blades and the entire FOWT system. The developed technology and numerical tool are readily applicable to any types of floating wind farms in any combinations of irregular waves, dynamic winds, and steady currents.