• 제목/요약/키워드: techno

검색결과 19,138건 처리시간 0.033초

Effect of domestic sewage on macro-micro physical and mechanical properties of soil

  • Zhi-Fei Li;Wei Liu;Yu-Ao Li;Yi Li;Shu-Chang Zhang;Yin-Lei Sun
    • Structural Monitoring and Maintenance
    • /
    • 제11권3호
    • /
    • pp.247-262
    • /
    • 2024
  • Domestic sewage can greatly affect the macro-micro physical-mechanical properties of building foundation soils. In order to investigate the effect of domestic sewage on physical and mechanical properties of soils, the physicochemical properties of three groups of different concentrations of domestic sewage contaminated soil were tested through indoor experiments. Combined with scanning electron microscopy, X-ray diffraction experiments, and grey relational analysis, the degree of influence of different concentrations of domestic sewage on the physicochemical properties of soil was compared and analyzed from multiple perspectives such as microstructure and mineral composition, revealing the influencing mechanism of soil pollution by domestic sewage. The results showed that under the immersion of contaminated water, the color of the soaking water turned black first and then yellow, and brownish yellow secretions appeared on the surface of the soil samples. The moisture content, specific gravity, density, and pore ratio index of the soil samples immersed in 50% and 100% domestic sewage decreased with the increase of sewage concentration, while the liquid limit of the soil samples changed in the opposite direction. The immersion time had little effect on the slope of the compression curve of the soil samples soaked in tap water. For the soil samples immersed in domestic sewage, the slope of the compression curve and the compression coefficient increased with the increase of domestic sewage concentration and immersion time, while the compression modulus showed the opposite trend. In the soil samples immersed in tap water, there were a large number of small particles and cementitious substances, and the structure was relatively dense. With the increase of domestic sewage concentration, the microstructure of the soil changed significantly, with the appearance of sigle particle structure, loose and disorderly arrangement of particles, increased and enlarged pores, gradual reduction of small particle substances and cementitious substances, and the soil structure transformed from compact to loose. The research findings can provide theoretical reference for contaminated geotechnical engineering.

Investigation of characteristic values in TDR waveform using SHapley Additive exPlanations (SHAP) for dielectric constant estimation during curing time

  • Won-Taek Hong;WooJin Han;Yong-Hoon Byun;Hyung-Koo Yoon
    • Smart Structures and Systems
    • /
    • 제34권1호
    • /
    • pp.25-32
    • /
    • 2024
  • As materials cure, the internal electrical flow changes, leading to variations in the dielectric constant over time. This study aims to assess the impact of voltage values extracted from time domain reflectometry (TDR) waveforms, measured during the curing of materials, on predicting the dielectric constant. The experiments are conducted over a curing period ranging from 60 to 8640 minutes, with 30 TDR trials. From the measured waveforms, values of V0, V1, V2, Vf, and Δt are deduced. Additionally, curing time is included as an input variable. Groups A and B are distinguished based on the presence or absence of Δt, indicating a physical relationship between Δt and the dielectric constant. The dielectric constant is set as the output variable. The SHapley Additive exPlanations (SHAP) algorithm is applied to the compiled data. The results indicate that Δt and V1 are the most influential input variables in both Group-A and Group-B. The study also presents the distribution of SHAP values and interacts SHAP values to infer the interrelationships among the input variables. To validate the reliability of these findings, the partial dependence (PD) algorithm is applied to estimate the marginal effects of each input variable, with outcomes closely aligning with those of the SHAP algorithm. This research suggests that understanding the contributions and proportional relationships of each input variable can aid in interpreting the relationships among various material properties.

Embedded type new in-situ soil stiffness assessment and monitoring technique

  • Namsun Kim;Jong-Sub Lee;Younggeun Yoo;Jinwook Kim;Junghee Park
    • Smart Structures and Systems
    • /
    • 제34권1호
    • /
    • pp.33-40
    • /
    • 2024
  • We aimed to assess the evolution of small-strain stiffness and relative density in non-compacted embankment layers. We developed embedded type in-situ soil stiffness measurement devices for monitoring small-strain stiffness occurring after filling at a test site and conducted comprehensive laboratory compaction tests using an oedometer cell with a bender element. However, direct comparison is extremely difficult because the shear wave velocity measured in the field and laboratory depend on depth and effective stress, respectively. Therefore, we propose a method for establishing a relationship between effective stress and depth using a compressibility model. In this study, the shear wave velocity measured in the field was compared to the estimated shear wave velocity-depth profiles for completely dry and saturated conditions with different relative densities. The relative density under saturated soil conditions may vary between 50% and 90% and tends to be closer to 95%. Under dry soil conditions, the relative density of the embankment can vary from 30% to 70% and tends to approach 76%. For model validation, the relative density estimated from shear wave velocity-depth profiles was compared to that estimated from DCPI data. In other words, the results analyzed in the context of an effective stress-depth model enable the prediction of engineering properties such as the small-strain stiffness and relative density of embankment layers. This study demonstrates that physics-based data analyses successfully capture the relative density of non-compacted embankment layers.

Full structure pseudo-dynamic test method and application based on OpenSees-OpenFresco-MTS

  • Zhen Tian;Yuan Cheng;Xuechong Ren;Mengmeng Yang
    • Structural Monitoring and Maintenance
    • /
    • 제11권3호
    • /
    • pp.173-185
    • /
    • 2024
  • Currently, the electro-hydraulic servo loading control system manufactured by MTS, OpenFresco hybrid test interface software and OpenSees finite element software are widely used in structure laboratories to carry out hybrid test, but there is no relevant public information about full structure pseudo-dynamic test based on the above software and hardware. In order to study the feasibility of using the above software and hardware to carry out full structure pseudo-dynamic test, the full structure pseudo-dynamic virtual experiments of a single degree of freedom (SDOF) structure and a two degrees of freedom (2DOFs) structure are carried out based on the MTS 793 Demo Mode, and the results are respectively compared with the finite element analysis method. The results show that the finite element analysis results and full structure pseudo-dynamic virtual experiment results are highly consistent, which verifies the feasibility of carrying out the full structure pseudo-dynamic test based on the above software and hardware. Then, a three story steel frame full structure pseudo-dynamic test is conducted, and the smooth implementation of full structure pseudo-dynamic test of the three story steel frame further verifies the reliability of thistesting method. The implementation method of carrying out the full structure pseudo-dynamic tests are introduced in detail, which can provide some reference for relevant research.

Comparative study of calcium carbonate deposition induced by microorganisms and plant ureases in fortified peat soils

  • Chao Wang;Jianbin Xie;Yinlei Sun;Jianjun Li;Jie Li;Ronggu Jia
    • Structural Monitoring and Maintenance
    • /
    • 제11권3호
    • /
    • pp.187-202
    • /
    • 2024
  • For the problems of high compressibility and low strength of peat soil formed by lake-phase deposition in Dianchi Lake, microbial-induced calcium carbonate deposition (MICP), phyto-urease-induced calcium carbonate deposition (EICP) and phyto-urease-induced calcium carbonate deposition combined with lignin (EICP combined with lignin) were used to reinforce the peat soil, the changes in mechanical properties of the soil before and after the reinforcement of the peat soil were experimentally investigated, and the effect and mechanism of peat soil reinforcing by the three reinforcing techniques were tested and analyzed using X-ray diffraction (XRD) and scanning electron microscope (SEM). The results show that: compared to the unreinforced remolded peat soil specimens, the unconfined compressive strength (UCS), cohesion and internal friction angle of the specimens reinforced by MICP, EICP and EICP combined with lignin techniques have been greatly improved, and the permeability resistance has been improved by two, two and three orders of magnitude, respectively; the different methods of reinforcing generate different calcium carbonate crystalline phases, with the EICP combined with lignin technique generating the most stable calcite, and the MICP and EICP techniques generating a mixed phase of calcite and spherulitic chalcocite. Analyses showed that for peat soil reinforcement, the acidic environment of peat soil inhibited the growth and reproduction of bacteria, EICP technology was superior to MICP technology, and the addition of lignin solved the defect of the EICP technology that did not have a "nucleation site", so EICP combined with lignin reinforcement was preferred for the improvement of peat soil.

Comparative research on gravity load simulation devices for structural seismic tests based on FEA

  • Yonglan Xie;Songtao Yan;Yurong Wang;Shuwei Song
    • Structural Monitoring and Maintenance
    • /
    • 제11권3호
    • /
    • pp.235-246
    • /
    • 2024
  • Structural seismic tests usually need to simulate the gravity load borne by the structure, the gravity load application devices should keep the force value and direction unchanged, and can adapt to the structural deformation. At present, there are two main ways to simulate gravity load in laboratory: roller group and prestress. However, there are few differential analysis between these two ways in the existing experimental studies. In this paper, the simulation software ABAQUS is used to simulate the static pushover analysis of reinforced concrete column and frame, which are the most common models in structural seismic tests. The results show that the horizontal restoring force of the model using prestressed loading method is significantly greater than roller group, and the difference between the two will increase with the increase of the horizontal deformation. The reason for the difference is that the prestressed loading method does not take the adverse effects of gravity second-order effect (P-Delta effect) into account. Therefore, the restoring force obtained under prestressed loading method should be corrected and the additional shear force caused by P-Delta effect should be deducted. After correction, the difference of restoring force between the two gravity load application methods is significantly reduced (when storey-drift is 1/550, the relative error is within 1%; and when storey-drift is 1/50, the relative error is about 3%). The research results of this research can provide reference for the selection and data processing of gravity load simulation devices in structural seismic tests.

Experimental and numerical investigation on low-velocity impact behaviour of thin hybrid carbon/aramid composite

  • Sojan Andrews Zachariah;Dayananda Pai K;Padmaraj N H;Satish Shenoy Baloor
    • Advances in materials Research
    • /
    • 제13권5호
    • /
    • pp.391-416
    • /
    • 2024
  • Hybrid composite materials are widely used in various load-bearing structural components of micro - mini UAVs. However, the design of thin laminates for better impact resistance remains a challenge, despite the strong demand for lightweight structures. This work aims to assess the low-velocity impact (LVI) behaviour of thin quasi-isotropic woven carbon/ aramid epoxy hybrid laminates using experimental and numerical techniques. Drop tower impact test with 10 J and 15 J impact energies is performed on carbon/epoxy laminates having aramid layers at different sequences and locations. The impact behaviour is experimentally evaluated using force-time, force-deformation, and energy-time histories considering delamination threshold load, peak load, and laminate deflection. Ultrasonic C-scan is performed on the post-impact samples to analyse the insidious damage profile at different impact energies. The experimental data is further utilized to numerically simulate LVI behaviour by employing the representative volume element model. The numerical results are in good agreement with the experimental data. Numerical and experimental approach predicts that the hybrid laminates with aramid layers at both impact and non-impact sides of the laminate exhibits significant improvement in the overall impact behaviour by having a subcritical damage morphology compared to carbon/epoxy laminate. A combined numerical-experimental approach is proposed for evaluating the effective impact performance.

Modified analytical AI evolution of composite structures with algorithmic optimization of performance thresholds

  • ZY Chen;Yahui Meng;Huakun Wu;ZY Gu;Timothy Chen
    • Steel and Composite Structures
    • /
    • 제53권1호
    • /
    • pp.103-114
    • /
    • 2024
  • This study proposes a new hybrid approach that utilizes post-earthquake survey data and numerical analysis results from an evolving finite element routing model to capture vulnerability processes. In order to achieve cost-effective evaluation and optimization, this study introduced an online data evolution data platform. The proposed method consists of four stages: 1) development of diagnostic sensitivity curve; 2) determination of probability distribution parameters of throughput threshold through optimization; 3) update of distribution parameters using smart evolution method; 4) derivation of updated diffusion parameters. Produce a blending curve. The analytical curves were initially obtained based on a finite element model used to represent a similar RC building with an estimated (previous) capacity height in the damaged area. The previous data are updated based on the estimated empirical failure probabilities from the post-earthquake survey data, and the mixed sensitivity curve is constructed using the update (subsequent) that best describes the empirical failure probabilities. The results show that the earthquake rupture estimate is close to the empirical rupture probability and corresponds very accurately to the real engineering online practical analysis. The objectives of this paper are to obtain adequate, safe and affordable housing and basic services, promote inclusive and sustainable urbanization and participation, implement sustainable and disaster-resilient buildings, sustainable human settlement planning and management. Therefore, with the continuous development of artificial intelligence and management strategy, this goal is expected to be achieved in the near future.

Enhancing mechanical performance of steel-tube-encased HSC composite walls: Experimental investigation and analytical modeling

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Huakun Wu;Lai B;Timothy Chen
    • Steel and Composite Structures
    • /
    • 제52권6호
    • /
    • pp.647-656
    • /
    • 2024
  • This paper discusses the study of concrete composite walls of algorithmic modeling, in which steel tubes are embedded. The load-bearing capacity of STHC composite walls increases with the increase of axial load coefficient, but its ductility decreases. The load-bearing capacity can be improved by increasing the strength of the steel pipes; however, the elasticity of STHC composite walls was found to be slightly reduced. As the shear stress coefficient increases, the load-bearing capacity of STHC composite walls decreases significantly, while the deformation resistance increases. By analyzing actual cases, we demonstrate the effectiveness of the research results in real situations and enhance the persuasiveness of the conclusions. The research results can provide a basis for future research, inspire more explorations on seismic design and construction, and further advance the development of this field. Emphasize the importance of research results, promote interdisciplinary cooperation in the fields of structural engineering, earthquake engineering, and materials science, and improve overall seismic resistance. The emphasis on these aspects will help highlight the practical impact of the research results, further strengthen the conclusions, and promote progress in the design and construction of earthquake-resistant structures. The goals of this work are access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient architecture, sustainable planning and management of human settlements. Simulation results of linear and nonlinear structures show that this method can detect structural parameters and their changes due to damage and unknown disturbances. Therefore, it is believed that with the further development of fuzzy neural network artificial intelligence theory, this goal will be achieved in the near future.

Artificial intelligence design for dependence of size surface effects on advanced nanoplates through theoretical framework

  • Na Tang;Canlin Zhang;Zh. Yuan;A. Yvaz
    • Steel and Composite Structures
    • /
    • 제52권6호
    • /
    • pp.621-626
    • /
    • 2024
  • The work researched the application of artificial intelligence to the design and analysis of advanced nanoplates, with a particular emphasis on size and surface effects. Employing an integrated theoretical framework, this study developed a more accurate model of complex nanoplate behavior. The following analysis considers nanoplates embedded in a Pasternak viscoelastic fractional foundation and represents the important step in understanding how nanoscale structures may respond under dynamic loads. Surface effects, significant for nanoscale, are included through the Gurtin-Murdoch theory in order to better describe the influence of surface stresses on the overall behavior of nanoplates. In the present analysis, the modified couple stress theory is utilized to capture the size-dependent behavior of nanoplates, while the Kelvin-Voigt model has been incorporated to realistically simulate the structural damping and energy dissipation. This paper will take a holistic approach in using sinusoidal shear deformation theory for the accurate replication of complex interactions within the nano-structure system. Addressing different aspectsof the dynamic behavior by considering the length scale parameter of the material, this work aims at establishing which one of the factors imposes the most influence on the nanostructure response. Besides, the surface stresses that become increasingly critical in nanoscale dimensions are considered in depth. AI algorithms subsequently improve the prediction of the mechanical response by incorporating other phenomena, including surface energy, material inhomogeneity, and size-dependent properties. In these AI- enhanced solutions, the improvement of precision becomes considerable compared to the classical solution methods and hence offers new insights into the mechanical performance of nanoplates when applied in nanotechnology and materials science.