• Title/Summary/Keyword: technegas

Search Result 8, Processing Time 0.031 seconds

Comparison of Lung Ventilation Scan Using Technegas and $^{99m}Tc-DTPA$ Aerosol (Technegas 환기스캔과 $^{99m}Tc-DTPA$ Aerosol 스캔의 비교)

  • Choi, Yoon-Ho;Kim, Sang-Eun;Lee, Dong-Soo;Chung, June-Key;Lee, Myung-Chul;Kim, Keun-Youl;Koh, Chang-Soon;Koong, Sung-Soo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.24 no.2
    • /
    • pp.237-243
    • /
    • 1990
  • Pulmonary embolism demands rapid and accurate diagnosis. And ventilation imaging has greatly improved the diagnostic accuracy of pulmonary embolism in addition to perfusion imaging. Agents currently used include xenon-133, krypton-81m and technetium-99m radioaerosols. However radioactive gases are compromised by availability and cost for krypton-81m, radiation dose, gamma energy and non?physiologic behaviour for xenon-133. Radioaerosols of technetium-99m componds are rapidly cleared from the lung after inhalation, and their relative low effeciency (specific radioactivity) and wide distribution of particle sizes make them also suboptimum. A new ventilation agent, Technegas is a suspension of structured graphite ellipsoids with diameter below 20nm, labelled with $^{99m}Tc$ in a carrier gas of Argon. This report describes the authors' clinical experience with Technegas. This is the first reported clinical study of this agent in Korea. A comparison of Technegas and $^{99m}Tc-DTPA$ aerosol was performed in 12 patients with various pulmonary diseases such as COPD, pulmonary tuberculosis and pleural effusion. All patients were studied with $^{99m}Tc-DTPA$ aerosol inhalation and Technegas ventilation. In both studies image quality was assessed (1) semiquantitatively by scoring bronchial and gastric activity, (2) subjectively by direct visual comparison of peripheral lung images and (3) quantitatively by computing the peripheral penetration index(PI) for each lungs. The bronchial activites were seen in 7 out of 12 cases with $^{99m}Tc-DTPA$ aerosol and in 5/12 with Technegas. The gastric activities were seen in 5/12 and 1/12 cases respectively. The average values of PI were 61.26% with $^{99m}Tc-DTPA$ aerosol and 69.20% with Technegas (p>0.05). Using $^{99m}Tc-DTPA$ aerosol, COPD patients showed deposition in the central airways with poor visualization of the peripheral areas of the lungs. In Technegas studies these phenomena were less prominent, and the examination is well tolerated by pateients and requires only a minimum of patient cooperation. With superiority of easy availability and handling, better physical characteristics and favorable Image quality, Technegas is a Promising agent for lung ventilation scanning.

  • PDF

The Measurement of Spatial Dose Rate by Gravity Ventilation after Technegas Scanning (Technegas 스캐닝 후 중력환기에 의한 공간선량율 측정)

  • Kim, Sung-Bin;Won, Do-Yeon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.667-674
    • /
    • 2019
  • Because examination with technegas produces images through simple diffusion accumulation, the examination room can become contaminated after scan. Therefore, radiation workers and patients awaiting examination will be affected by internal exposure from technegas inhalation. Before and after gravity ventilation, I am trying to find a way to reduce the exposure dose of waiting patients according to a comparative analysis of horizontal spatial dose rates over time. Spatial dose ratio were measured for 10 minutes from various distances and angles around ventilator's location before and after gravity ventilation. Then, mean values, standard deviation and reduction ratio were calculated. The highest reduction rate of gravity ventilation was 95.31% and the highest reduction ratio was 1 to 3 minutes. Therefore, the gravity ventilation could reduce the exposure dose of radiologic technologists, waiting patients, patient guardians and nurses. In conclusion, the reduction of the exposure dose during the technegas ventilation study through gravity ventilation will play a role in optimiging the protection and it is in accordance with the recommended reduction of the medical exposure by ICRP 103.

A Study on the Correlation between Lung Ventilation Scan using Technegas and Pulmonary Function Test in Patients with COPD (Technegas를 이용한 폐환기 검사와 폐기능 검사의 상관관계에 관한 고찰)

  • Kim, Sang-Gyu;Kim, Jin-Gu;Baek, Song-EE;Kang, Chun-Koo;Kim, Jae-Sam
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.23 no.1
    • /
    • pp.45-49
    • /
    • 2019
  • Purpose Lung Ventilation Scan(LVS) images directly inhaled radiation gas to evaluate lung ventilation ability. Therefore, it is influenced by various factors related to inhalation, including number of breaths, respiratory duration, respiration rate, and breathing method. In actual LVS examinations, it is difficult for objectify the patient's ability to inhale, and there is currently no known index related to inhalation. Therefore, this study confirms the correlation between counts per second(cps) in LVS and the results of pulmonary function test(PFT) and evaluate its usefulness as an objective indicator of inhalation. Materials and Methods From October 2010 to September 2018, 36 Chronic Obstructive Pulmonary Disease(COPD) patients who had both LVS and PFT were classified by severity(Mild, Moderate, Severe). LVS was performed by creating Technegas with Vita Medical's Technegas Generator and inhaling it to the patient. LVS images were acquired with Philips's Forte equipment., and PFT used Carefusion's Vmax Encore 22. The correlation between the cps measured by setting the region of interest(ROI) of both lungs on the LVS and the forced vital capacity(FVC), forced expiratory volume in one second($FEV_1$), $FEV_1/FVC$ of the results of PFT was compared and analyzed. Results We analyzed the correlation between cps of LVS using Technegas and the results of PFT by classifying COPD patients according to severity. Correlation coefficient between $FEV_1/FVC$ and cps was Severe -0.773, Moderate -0.750, and Mild -0.437. The Severe and Modulate result values were statistically significant(P<0.05) and Mild was not significant(P=0.155). On the other hand, the correlation coefficient between FVC and cps was statistically significant only in Mild and it was 0.882(P<0.05). Conclusion According to the study, we were able to analyze correlation between cps of LVS using Technegas and the results of PFT in COPD Patients. Using this result, when performing a LVS, the results of PFT can be used as an index of inhaling capacity. In addition, it is thought that it will be more effective for the operation of the exam rooms.

Scintigraphic Evaluation of Inhalation Injury in Fire Victims (화재사고시 흡입에 의한 기도손상의 핵의학적 평가)

  • Chun, Kyung-Ah;Cho, Ihn-Ho;Won, Gyu-Jang;Lee, Hyung-Woo;Shin, Kyung-Chul;Jeong, Jin-Hong;Lee, Gwan-Ho
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.1
    • /
    • pp.28-32
    • /
    • 2006
  • Purpose: Conventional chest X-ray and pulmonary function test cannot sensitively detect inhalation injury. Bronchoscopy is known to be the gold standard but it is invasive method. We evaluated whether lung inhalation/perfusion scans can sensitively detect inhalation injury of fire victims. Materials and Methods: Nineteen patients (male 9, female 10, mean age 31.6 yr) of fire victims were enrolled in this study. Inhalation lung scan was performed 2 days later after inhalation injury with $^{99m}Tc$-technegas. Perfusion lung scan was performed 4 days later with $^{99m}Tc$- MAA (macroaggregated albumin). Follow up lung scans were performed 16 and 18 days later for each. Chest X-ray was performed in all patients and bronchoscopy was performed in 17 of 19 patients at the same period. Pulmonary function test was performed in 9 patients. Results: Four of 19 patients showed inhalation and perfusion defects and one showed inhalation defect but, normal perfusion scan findings. These five patients with abnormal scan findings showed abnormal bronchoscopic findings and severe respiratory symptoms. On chest X-ray, 2 of them had pulmonary tuberculosis and one of them showed pulmonary congestion. FEV1 /FVC was abnormal in 3 patients. On the follow up scan, all patients with abnormal initial scan findings showed improved findings and they had improved clinical state. Conclusion: Inhalation/perfusion lung scans can detect inhalation burn injury noninvasively in early stage and may be useful in therapeutic decision making and follow up of patients.

The Study on Usefulness of LEAP Collimator in Lung Ventilation SPECT (Lung Ventilation SPECT에서 LEAP Collimator의 유용성에 관한 연구)

  • Kim, Jung Soo;Kim, Soo Mee;Kim, Jin Eui;Lee, Jae Sung;Lee, Dong Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.18-24
    • /
    • 2012
  • Purpose : Although lung ventilation SPECT (LV-SPECT) has a good sensitivity in detection of deep lung lesions, it is difficult to apply the LV-SPECT to patients having breathing problems due to limited examination time. In this study, we evaluated the usefulness of LEAP collimator, which provides high detection sensitivity and tolerable resolution, for the LV-SPECT in terms of diagnostic accuracy and examination time. Materials and Methods : Four volunteers inhaled Technegas (370 MBq) and the lung ventilation planar scan (LVPS, 300 counts/view (cpv)) with LEHR collimator was performed using Siemens E.cam scanner as a reference test. LV-SPECT scans were performed with three collimators, LEHR, LEUHR, and LEAP, in low (7 kcpv) and high (70 kcpv) counting modes. The count ratios of left (LT) and right (RT) lung segments were calculated on the geometric mean view of anterior and posterior images for LVPS and on the summed coronal images of LV-SPECT, respectively. Comparing to LVPS, the usefulness of three different collimators for LV-SPECT was evaluated through statistical analysis (paired t-test), on count ratios of lung segments. Results : The average LT:RT ratio in LVPS was 47:53. For LV-SPECT, there were negligible difference of the LT:RT ratios (48:52 on average) among three different collimators in low and high counting modes. Comparing to standard LVPS with LEHR, all LV-SPECTs with different collimators resulted in similar diagnostic accuracy through paired t-test (p>0.05). The scan time in LVPS (6 views) was 17.3 min. For LV-SPECT (128 views) in low counting mode, it took 18.7 (LEUHR), 15.0 (LEHR), and 12.3 min (LEAP), respectively. Conclusion : Comparing to standard LVPS, the LV-SPECT with LEAP in low counting mode provided the comparable diagnostic accuracy in addition to shortened scan time.

  • PDF