• Title/Summary/Keyword: teaching-learning optimization algorithm

Search Result 30, Processing Time 0.02 seconds

Structural optimization with teaching-learning-based optimization algorithm

  • Dede, Tayfun;Ayvaz, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.47 no.4
    • /
    • pp.495-511
    • /
    • 2013
  • In this paper, a new efficient optimization algorithm called Teaching-Learning-Based Optimization (TLBO) is used for the least weight design of trusses with continuous design variables. The TLBO algorithm is based on the effect of the influence of a teacher on the output of learners in a class. Several truss structures are analyzed to show the efficiency of the TLBO algorithm and the results are compared with those reported in the literature. It is concluded that the TLBO algorithm presented in this study can be effectively used in the weight minimization of truss structures.

Design of pin jointed structures using teaching-learning based optimization

  • Togan, Vedat
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.209-225
    • /
    • 2013
  • A procedure employing a Teaching-Learning Based Optimization (TLBO) method is developed to design discrete pin jointed structures. TLBO process consists of two parts: the first part represents learning from teacher and the second part illustrates learning by interaction among the learners. The results are compared with those obtained using other various evolutionary optimization methods considering the best solution, average solution, and computational effort. Consequently, the TLBO algorithm works effectively and demonstrates remarkable performance for the optimization of engineering design applications.

Optimal Design of Magnetic Levitation Controller Using Advanced Teaching-Learning Based Optimization (개선된 수업-학습기반 최적화 알고리즘을 이용한 자기부상 제어기의 최적 설계)

  • Cho, Jae-Hoon;Kim, Yong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.90-98
    • /
    • 2015
  • In this paper, an advanced teaching-learning based optimization(TLBO) method for the magnetic levitation controller of Maglev transportation system is proposed to optimize the control performances. An attraction-type levitation system is intrinsically unstable and requires a delicate control. It is difficult to completely satisfy the desired performance through the methods using conventional methods and intelligent optimizations. In the paper, we use TLBO and clonal selection algorithm to choose the optimal control parameters for the magnetic levitation controller. To verify the proposed algorithm, we compare control performances of the proposed method with the genetic algorithm and the particle swarm optimization. The simulation results show that the proposed method is more effective than conventional methods.

Topology, shape, and size optimization of truss structures using modified teaching-learning based optimization

  • Tejani, Ghanshyam G.;Savsani, Vimal J.;Patel, Vivek K.;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • v.2 no.4
    • /
    • pp.313-331
    • /
    • 2017
  • In this study, teaching-learning based optimization (TLBO) is improved by incorporating model of multiple teachers, adaptive teaching factor, self-motivated learning, and learning through tutorial. Modified TLBO (MTLBO) is applied for simultaneous topology, shape, and size optimization of space and planar trusses to study its effectiveness. All the benchmark problems are subjected to stress, displacement, and kinematic stability constraints while design variables are discrete and continuous. Analyses of unacceptable and singular topologies are prohibited by seeing element connectivity through Grubler's criterion and the positive definiteness. Performance of MTLBO is compared to TLBO and state-of-the-art algorithms available in literature, such as a genetic algorithm (GA), improved GA, force method and GA, ant colony optimization, adaptive multi-population differential evolution, a firefly algorithm, group search optimization (GSO), improved GSO, and intelligent garbage can decision-making model evolution algorithm. It is observed that MTLBO has performed better or found nearly the same optimum solutions.

Teaching learning-based optimization for design of cantilever retaining walls

  • Temur, Rasim;Bekdas, Gebrail
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.763-783
    • /
    • 2016
  • A methodology based on Teaching Learning-Based Optimization (TLBO) algorithm is proposed for optimum design of reinforced concrete retaining walls. The objective function is to minimize total material cost including concrete and steel per unit length of the retaining walls. The requirements of the American Concrete Institute (ACI 318-05-Building code requirements for structural concrete) are considered for reinforced concrete (RC) design. During the optimization process, totally twenty-nine design constraints composed from stability, flexural moment capacity, shear strength capacity and RC design requirements such as minimum and maximum reinforcement ratio, development length of reinforcement are checked. Comparing to other nature-inspired algorithm, TLBO is a simple algorithm without parameters entered by users and self-adjusting ranges without intervention of users. In numerical examples, a retaining wall taken from the documented researches is optimized and the several effects (backfill slope angle, internal friction angle of retaining soil and surcharge load) on the optimum results are also investigated in the study. As a conclusion, TLBO based methods are feasible.

Optimum design of cantilever retaining walls under seismic loads using a hybrid TLBO algorithm

  • Temur, Rasim
    • Geomechanics and Engineering
    • /
    • v.24 no.3
    • /
    • pp.237-251
    • /
    • 2021
  • The main purpose of this study is to investigate the performance of the proposed hybrid teaching-learning based optimization algorithm on the optimum design of reinforced concrete (RC) cantilever retaining walls. For this purpose, three different design examples are optimized with 100 independent runs considering continuous and discrete variables. In order to determine the algorithm performance, the optimization results were compared with the outcomes of the nine powerful meta-heuristic algorithms applied to this problem, previously: the big bang-big crunch (BB-BC), the biogeography based optimization (BBO), the flower pollination (FPA), the grey wolf optimization (GWO), the harmony search (HS), the particle swarm optimization (PSO), the teaching-learning based optimization (TLBO), the jaya (JA), and Rao-3 algorithms. Moreover, Rao-1 and Rao-2 algorithms are applied to this design problem for the first time. The objective function is defined as minimizing the total material and labor costs including concrete, steel, and formwork per unit length of the cantilever retaining walls subjected to the requirements of the American Concrete Institute (ACI 318-05). Furthermore, the effects of peak ground acceleration value on minimum total cost is investigated using various stem height, surcharge loads, and backfill slope angle. Finally, the most robust results were obtained by HTLBO with 50 populations. Consequently the optimization results show that, depending on the increase in PGA value, the optimum cost of RC cantilever retaining walls increases smoothly with the stem height but increases rapidly with the surcharge loads and backfill slope angle.

Quantification and location damage detection of plane and space truss using residual force method and teaching-learning based optimization algorithm

  • Shallan, Osman;Hamdy, Osman
    • Structural Engineering and Mechanics
    • /
    • v.81 no.2
    • /
    • pp.195-203
    • /
    • 2022
  • This paper presents the quantification and location damage detection of plane and space truss structures in a two-phase method to reduce the computations efforts significantly. In the first phase, a proposed damage indicator based on the residual force vector concept is used to get the suspected damaged members. In the second phase, using damage quantification as a variable, a teaching-learning based optimization algorithm (TLBO) is used to obtain the damage quantification value of the suspected members obtained in the first phase. TLBO is a relatively modern algorithm that has proved distinguished in solving optimization problems. For more verification of TLBO effeciency, the classical particle swarm optimization (PSO) is used in the second phase to make a comparison between TLBO and PSO algorithms. As it is clear, the first phase reduces the search space in the second phase, leading to considerable reduction in computations efforts. The method is applied on three examples, including plane and space trusses. Results have proved the capability of the proposed method to precisely detect the quantification and location of damage easily with low computational efforts, and the efficiency of TLBO in comparison to the classical PSO.

A teaching learning based optimization for truss structures with frequency constraints

  • Dede, Tayfun;Togan, Vedat
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.833-845
    • /
    • 2015
  • Natural frequencies of the structural systems should be far away from the excitation frequency in order to avoid or reduce the destructive effects of dynamic loads on structures. To accomplish this goal, a structural optimization on size and shape has been performed considering frequency constraints. Such an optimization problem has highly nonlinear property. Thus, the quality of the solution is not independent of the optimization technique to be applied. This study presents the performance evaluation of the recently proposed meta-heuristic algorithm called Teaching Learning Based Optimization (TLBO) as an optimization engine in the weight optimization of the truss structures under frequency constraints. Some examples regarding the optimization of trusses on shape and size with frequency constraints are solved. Also, the results obtained are tabulated for comparison. The results demonstrated that the performance of the TLBO is satisfactory. Additionally, TLBO is better than other methods in some cases.

A developed design optimization model for semi-rigid steel frames using teaching-learning-based optimization and genetic algorithms

  • Shallan, Osman;Maaly, Hassan M.;Hamdy, Osman
    • Structural Engineering and Mechanics
    • /
    • v.66 no.2
    • /
    • pp.173-183
    • /
    • 2018
  • This paper proposes a developed optimization model for steel frames with semi-rigid beam-to-column connections and fixed bases using teaching-learning-based optimization (TLBO) and genetic algorithm (GA) techniques. This method uses rotational deformations of frame members ends as an optimization variable to simultaneously obtain the optimum cross-sections and the most suitable beam-to-column connection type. The total cost of members plus connections cost of the frame are minimized. Frye and Morris (1975) polynomial model is used for modeling nonlinearity of semi-rigid connections, and the $P-{\Delta}$ effect and geometric nonlinearity are considered through a stepped analysis process. The stress and displacement constraints of AISC-LRFD (2016) specifications, along with size fitting constraints, are considered in the design procedure. The developed model is applied to three benchmark steel frames, and the results are compared with previous literature results. The comparisons show that developed model using both LTBO and GA achieves better results than previous approaches in the literature.

Design of Fuzzy Logic Controller for Optimal Control of Hybrid Renewable Energy System (하이브리드 신재생에너지 시스템의 최적제어를 위한 퍼지 로직 제어기 설계)

  • Jang, Seong-Dae;Ji, Pyeong-Shik
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.3
    • /
    • pp.143-148
    • /
    • 2018
  • In this paper, the optimal fuzzy logic controller(FLC) for a hybrid renewable energy system(HRES) is proposed. Generally, hybrid renewable energy systems can consist of wind power, solar power, fuel cells and storage devices. The proposed FLC can effectively control the entire HRES by determining the output power of the fuel cell or the absorption power of the electrolyzer. In general, fuzzy logic controllers can be optimized by classical optimization algorithms such as genetic algorithms(GA) or particle swarm optimization(PSO). However, these FLC have a disadvantage in that their performance varies greatly depending on the control parameters of the optimization algorithms. Therefore, we propose a method to optimize the fuzzy logic controller using the teaching-learning based optimization(TLBO) algorithm which does not have the control parameters of the algorithm. The TLBO algorithm is an optimization algorithm that mimics the knowledge transfer mechanism in a class. To verify the performance of the proposed algorithm, we modeled the hybrid system using Matlab Tool and compare and analyze the performance with other classical optimization algorithms. The simulation results show that the proposed method shows better performance than the other methods.