• Title/Summary/Keyword: taylor-series

Search Result 292, Processing Time 0.027 seconds

Performance Analysis of Monopulse System Based on Third-Order Taylor Expansion in Additive Noise (부가성 잡음이 존재하는 모노펄스 시스템 성능의 3차 테일러 전개 기반 해석적 분석)

  • Ham, Hyeong-Woo;Kim, Kun-Young;Lee, Joon-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.12
    • /
    • pp.14-21
    • /
    • 2021
  • In this paper, it is shown how the performance of the monopulse algorithm in the presence of an additive noise can be obtained analytically. In the previous study, analytic performance analysis based on the first-order Taylor series and the second-order Taylor series has been conducted. By adopting the third-order Taylor series, it is shown that the analytic performance based on the third-order Taylor series can be made closer to the performance of the original monopulse algorithm than the analytic performance based on the first-order Taylor series and the second-order Taylor series. The analytic MSE based on the third-order Taylor approximation reduces the analytic MSE error based on the second-order Taylor approximation by 89.5%. It also shows faster results in all cases than the Monte Carlo-based MSE. Through this study, it is possible to explicitly analyze the angle estimation ability of monopulse radar in an environment where noise jamming is applied.

Time-Discretization of Nonlinear control systems with State-delay via Taylor-Lie Series (Taylor-Lei Series에 의한 지연이 있는 비선형 시스템의 시간 이산화)

  • Zhang, Yuanliang;Lee, Yi-Dong;Chong, Kil-To
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.125-127
    • /
    • 2005
  • In this paper, we propose a new scheme for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption. This scheme is applied to the sample-data representation of a nonlinear system with constant state tine-delay. The mathematical expressions of the discretization scheme are presented and the effect of the time-discretization method on key properties of nonlinear control system with state tine-delay, such as equilibrium properties and asymptotic ability, is examined. The proposed scheme provides a finite-dimensional representation for nonlinear systems with state time-delay enabling existing controller design techniques to be applied to then. The performance of the proposed discretization procedure is evaluated using a nonlinear system. For this nonlinear system, various sampling rates and time-delay values are considered.

  • PDF

Time Discretization of Nonlinear System with Variable Time-delay Input Using Taylor Series Expansion (Taylor series를 이용한 시변 지연 입력을 갖는 비선형 시스템의 이산화)

  • Choi Hyung Jo;Park Ji Hyang;Lee Su Young;Chong Kil To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • A new discretization algorithm for nonlinear systems with delayed input is proposed. The algorithm is represented by Taylor series expansion and ZOH assumption. This method is applied to the sampled-data representation of a nonlinear system with the time-delay input. Additionally, the delay in input is time varying and its amplitude is bounded. The maximum time-delay in input is assumed to be two sampling periods. The mathematical expressions of the discretization method are presented and the ability of the algorithm is tested for some of the examples. The computer simulation proves the proposed algorithm discretizes the nonlinear system with the variable time-delay input accurately.

Time Discretization of the Nonlinear System with Variable Time-delayed Input using a Taylor Series Expansion

  • Choi, Hyung-Jo;Chong, Kil-To
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2562-2567
    • /
    • 2005
  • This paper suggests a new method discretization of nonlinear system using Taylor series expansion and zero-order hold assumption. This method is applied into the sampled-data representation of a nonlinear system with input time delay. Additionally, the delayed input is time varying and its amplitude is bounded. The maximum time-delayed input is assumed to be two sampling periods. Them mathematical expressions of the discretization method are presented and the ability of the algorithm is tested for some of the examples. And 'hybrid' discretization scheme that result from a combination of the ‘scaling and squaring' technique with the Taylor method are also proposed, especially under condition of very low sampling rates. The computer simulation proves the proposed algorithm discretized the nonlinear system with the variable time-delayed input accurately.

  • PDF

Time-Discretization of Nonlinear Systems with Time Delayed Output via Taylor Series

  • Yuanliang Zhang;Chong Kil-To
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.950-960
    • /
    • 2006
  • An output time delay always exists in practical systems. Analysis of the delay phenomenon in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding discrete-time model for implementation via a digital computer. A new method for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption is proposed in this paper. This method is applied to the sampled-data representation of a nonlinear system with a constant output time-delay. In particular, the effect of the time-discretization method on key properties of nonlinear control systems, such as equilibrium properties and asymptotic stability, is examined. In addition, 'hybrid' discretization schemes resulting from a combination of the 'scaling and squaring' technique with the Taylor method are also proposed, especially under conditions of very low sampling rates. A performance of the proposed method is evaluated using two nonlinear systems with time-delay output.

ENHANCED SEMI-ANALYTIC METHOD FOR SOLVING NONLINEAR DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER

  • JANG, BONGSOO;KIM, HYUNJU
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.23 no.4
    • /
    • pp.283-300
    • /
    • 2019
  • In this paper, we propose a new semi-analytic approach based on the generalized Taylor series for solving nonlinear differential equations of fractional order. Assuming the solution is expanded as the generalized Taylor series, the coefficients of the series can be computed by solving the corresponding recursive relation of the coefficients which is generated by the given problem. This method is called the generalized differential transform method(GDTM). In several literatures the standard GDTM was applied in each sub-domain to obtain an accurate approximation. As noticed in [19], however, a direct application of the GDTM in each sub-domain loses a term of memory which causes an inaccurate approximation. In this work, we derive a new recursive relation of the coefficients that reflects an effect of memory. Several illustrative examples are demonstrated to show the effectiveness of the proposed method. It is shown that the proposed method is robust and accurate for solving nonlinear differential equations of fractional order.

Discretization of Nonlinear Systems with Delayed Multi-Input VIa Taylor Series and Scaling and Squaring Technique

  • Yuanliang Zhang;Chong Kil To
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.11
    • /
    • pp.1975-1987
    • /
    • 2005
  • An input time delay always exists in practical systems. Analysis of the delay phenomenon in a continuous-time domain is sophisticated. It is appropriate to obtain its corresponding discrete-time model for implementation via digital computers. In this paper a new scheme for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption is proposed. The mathematical structure of the new discretization method is analyzed. On the basis of this structure the sampled-data representation of nonlinear systems with time-delayed multi-input is presented. The delayed multi-input general equation has been derived. In particular, the effect of the time-discretization method on key properties of nonlinear control systems, such as equilibrium properties and asymptotic stability, is examined. Additionally, hybrid discretization schemes that result from a combination of the scaling and squaring technique (SST) with the Taylor series expansion are also proposed, especially under conditions of very low sampling rates. Practical issues associated with the selection of the method's parameters to meet CPU time and accuracy requirements, are examined as well. A performance of the proposed method is evaluated using a nonlinear system with time delay maneuvering an automobile.

Analytical Solution for Long Waves on Axis-Symmetric Topographies (축 대칭 지형 위를 전파하는 장파의 해석해)

  • Jung, Tae-Hwa;Lee, Changhoon;Cho, Yong-Sik;Lee, Jin-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4B
    • /
    • pp.413-419
    • /
    • 2008
  • In this study, we develop analytical solutions for long waves propagating over several types of axis-symmetric topographies where the water depth varies in an arbitrary power of radial distance. The first type is a cylindrical island mounted on a shoal. The second type is a circular island. To get the solution, the methods of separation of variables, Taylor series expansion and Frobenius series are used. Developed analytical solutions are validated by comparing with previously developed analytical solutions. We also investigate various cases with different incident wave periods, radii of the shoal, and the powers of radial distance.

Time-Discretization of Non-Affine Nonlinear System with Delayed Input Using Taylor-Series

  • Park, Ji-Hyang;Chong, Kil-To;Kazantzis, Nikolaos;Parlos, Alexander G.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1297-1305
    • /
    • 2004
  • In this paper, we propose a new scheme for the discretization of nonlinear systems using Taylor series expansion and the zero-order hold assumption. This scheme is applied to the sampled-data representation of a non-affine nonlinear system with constant input time-delay. The mathematical expressions of the discretization scheme are presented and the ability of the algorithm is tested for some of the examples. The proposed scheme provides a finite-dimensional representation for nonlinear systems with time-delay enabling existing controller design techniques to be applied to them. For all the case studies, various sampling rates and time-delay values are considered.

Feedback Linearization Control of the Looper System in Hot Strip Mills

  • Hwang, I-Cheol;Kim, Seong-Bae
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.11
    • /
    • pp.1608-1615
    • /
    • 2003
  • This paper studies on the linearization of a looper system in hot strip mills, that plays an important role in regulating a strip tension or a strip width. Nonlinear dynamic equations of the looper system are analytically linearized by a static feedback linearization algorithm with a compensator. The proposed linear model of the looper is validated by a comparison with a linear model using Taylor's series. It is shown that the linear model by static feedback well describes nonlinearities of the looper system than one using Taylor's series. Furthermore, it is shown from the design of an ILQ controller that the linear model by static feedback is very useful in designing a linear controller of the looper system.