• 제목/요약/키워드: task-based data

검색결과 1,403건 처리시간 0.028초

ESTIMATING THE OPERATOR'S PERFORMANCE TIME OF EMERGENCY PROCEDURAL TASKS BASED ON A TASK COMPLEXITY MEASURE

  • Jung, Won-Dea;Park, Jin-Kyun
    • Nuclear Engineering and Technology
    • /
    • 제44권4호
    • /
    • pp.415-420
    • /
    • 2012
  • It is important to understand the amount of time required to execute an emergency procedural task in a high-stress situation for managing human performance under emergencies in a nuclear power plant. However, the time to execute an emergency procedural task is highly dependent upon expert judgment due to the lack of actual data. This paper proposes an analytical method to estimate the operator's performance time (OPT) of a procedural task, which is based on a measure of the task complexity (TACOM). The proposed method for estimating an OPT is an equation that uses the TACOM as a variable, and the OPT of a procedural task can be calculated if its relevant TACOM score is available. The validity of the proposed equation is demonstrated by comparing the estimated OPTs with the observed OPTs for emergency procedural tasks in a steam generator tube rupture scenario.

Dynamics-Based Location Prediction and Neural Network Fine-Tuning for Task Offloading in Vehicular Networks

  • Yuanguang Wu;Lusheng Wang;Caihong Kai;Min Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권12호
    • /
    • pp.3416-3435
    • /
    • 2023
  • Task offloading in vehicular networks is hot topic in the development of autonomous driving. In these scenarios, due to the role of vehicles and pedestrians, task characteristics are changing constantly. The classical deep learning algorithm always uses a pre-trained neural network to optimize task offloading, which leads to system performance degradation. Therefore, this paper proposes a neural network fine-tuning task offloading algorithm, combining with location prediction for pedestrians and vehicles by the Payne model of fluid dynamics and the car-following model, respectively. After the locations are predicted, characteristics of tasks can be obtained and the neural network will be fine-tuned. Finally, the proposed algorithm continuously predicts task characteristics and fine-tunes a neural network to maintain high system performance and meet low delay requirements. From the simulation results, compared with other algorithms, the proposed algorithm still guarantees a lower task offloading delay, especially when congestion occurs.

A Joint Allocation Algorithm of Computing and Communication Resources Based on Reinforcement Learning in MEC System

  • Liu, Qinghua;Li, Qingping
    • Journal of Information Processing Systems
    • /
    • 제17권4호
    • /
    • pp.721-736
    • /
    • 2021
  • For the mobile edge computing (MEC) system supporting dense network, a joint allocation algorithm of computing and communication resources based on reinforcement learning is proposed. The energy consumption of task execution is defined as the maximum energy consumption of each user's task execution in the system. Considering the constraints of task unloading, power allocation, transmission rate and calculation resource allocation, the problem of joint task unloading and resource allocation is modeled as a problem of maximum task execution energy consumption minimization. As a mixed integer nonlinear programming problem, it is difficult to be directly solve by traditional optimization methods. This paper uses reinforcement learning algorithm to solve this problem. Then, the Markov decision-making process and the theoretical basis of reinforcement learning are introduced to provide a theoretical basis for the algorithm simulation experiment. Based on the algorithm of reinforcement learning and joint allocation of communication resources, the joint optimization of data task unloading and power control strategy is carried out for each terminal device, and the local computing model and task unloading model are built. The simulation results show that the total task computation cost of the proposed algorithm is 5%-10% less than that of the two comparison algorithms under the same task input. At the same time, the total task computation cost of the proposed algorithm is more than 5% less than that of the two new comparison algorithms.

지식 프로세스와 지식관리시스템의 성과 (The Knowledge Process and Performance of Knowledge Management Systems)

  • 강인원;이건창;이상재
    • 지식경영연구
    • /
    • 제9권3호
    • /
    • pp.43-57
    • /
    • 2008
  • This study examines the impact of knowledge processes (KP) on the performance of knowledge management systems (KMS). It posits that task needs and available functionality of technology existing in an organization could influence the usability of KP and the KMS performance. A firm-level structural model was developed based on data collected from corporate KM users. Survey-based research was carried out to test this model. Following questionnaire development, validation, and pretest with a pilot study, data were collected from 886 knowledge management (KM) users including directors, managers, and workers in a South Korea-based company, Korea Asset Management Corporation (KAMCO), to measure the task needs and available functionality of technology to improve the KMS performance. Results show that the matching between the two factors-technology and task-had a significant influence on the usability of KP and the KMS performance, and a better usability of KP has positive impact on the KMS performance. Implications on KM practices and KMS designs are also discussed.

  • PDF

단순 지적과업 중 인간과오 관련 심리생리학적 특성의 변화 (Variation of Psychophysiological Characteristics Related with Human Errors during a Simple Pointing Task)

  • 임현교
    • 한국안전학회지
    • /
    • 제24권3호
    • /
    • pp.71-78
    • /
    • 2009
  • During a learning process, a human being is assumed to experience knowledge-based behaviors, rule-based behaviors, and skill-based behaviors sequentially if Rasmussen was right. If any psycho-physiological symptom to those different levels can be obtained, it can be useful as a measure whether a human being is fully trained and has gotten a skill in his work. Therefore, this study aimed to draw relationships between human performance measures and psycho-physiological measures while committing a computer-simulated pointing task by utilizing the power spectrum technique of EEG data, especially with the ratio of relative beta-to-alpha band power. The result showed that, during correct responses, the ratio came to stabilize as all the performance data went stable. However, response time was not a simple linear function of task difficulty level only, but a joint function of task characteristics as well as behavior levels. Comparing relative band power ratios from errors and correct responses, activated states of one's brain could be explained, and characteristics of the task could understood. To tell that of pointing task, correlations around C3, C4, P3, P4 and 01, 02 area were significant and high in correct response cases whereas most correlation coefficients went down in error cases standing for imbalance of psycho-motor functions. Though task difficulty was the only one factor that could influence on relative band power ratio with statistical significance, it should be comprehended to mean a different way of expression indicating task characteristics since at least error-some situation could be explained with the help of relative band power ratio that absolute band power failed.

다채널 뇌파 분류를 위한 주성분 분석 기반 선형동적시스템 (PCA-based Linear Dynamical Systems for Multichannel EEG Classification)

  • Lee, Hyekyoung;Park, Seungjin
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 가을 학술발표논문집 Vol.29 No.2 (2)
    • /
    • pp.232-234
    • /
    • 2002
  • EEG-based brain computer interface (BCI) provides a new communication channel between human brain and computer. The classification of EEG data is an important task in EEG-based BCI. In this paper we present methods which jointly employ principal component analysis (PCA) and linear dynamical system (LDS) modeling for the task of EEG classification. Experimental study for the classification of EEG data during imagination of a left or right hand movement confirms the validity of our proposed methods.

  • PDF

Many-objective joint optimization for dependency-aware task offloading and service caching in mobile edge computing

  • Xiangyu Shi;Zhixia Zhang;Zhihua Cui;Xingjuan Cai
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제18권5호
    • /
    • pp.1238-1259
    • /
    • 2024
  • Previous studies on joint optimization of computation offloading and service caching policies in Mobile Edge Computing (MEC) have often neglected the impact of dependency-aware subtasks, edge server resource constraints, and multiple users on policy formulation. To remedy this deficiency, this paper proposes a many-objective joint optimization dependency-aware task offloading and service caching model (MaJDTOSC). MaJDTOSC considers the impact of dependencies between subtasks on the joint optimization problem of task offloading and service caching in multi-user, resource-constrained MEC scenarios, and takes the task completion time, energy consumption, subtask hit rate, load variability, and storage resource utilization as optimization objectives. Meanwhile, in order to better solve MaJDTOSC, a many-objective evolutionary algorithm TSMSNSGAIII based on a three-stage mating selection strategy is proposed. Simulation results show that TSMSNSGAIII exhibits an excellent and stable performance in solving MaJDTOSC with different number of users setting and can converge faster. Therefore, it is believed that TSMSNSGAIII can provide appropriate sub-task offloading and service caching strategies in multi-user and resource-constrained MEC scenarios, which can greatly improve the system offloading efficiency and enhance the user experience.

The Game Selection Model for the Payoff Strategy Optimization of Mobile CrowdSensing Task

  • Zhao, Guosheng;Liu, Dongmei;Wang, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권4호
    • /
    • pp.1426-1447
    • /
    • 2021
  • The payoff game between task publishers and users in the mobile crowdsensing environment is a hot topic of research. A optimal payoff selection model based on stochastic evolutionary game is proposed. Firstly, the process of payoff optimization selection is modeled as a task publisher-user stochastic evolutionary game model. Secondly, the low-quality data is identified by the data quality evaluation algorithm, which improves the fitness of perceptual task matching target users, so that task publishers and users can obtain the optimal payoff at the current moment. Finally, by solving the stability strategy and analyzing the stability of the model, the optimal payoff strategy is obtained under different intensity of random interference and different initial state. The simulation results show that, in the aspect of data quality evaluation, compared with BP detection method and SVM detection method, the accuracy of anomaly data detection of the proposed model is improved by 8.1% and 0.5% respectively, and the accuracy of data classification is improved by 59.2% and 32.2% respectively. In the aspect of the optimal payoff strategy selection, it is verified that the proposed model can reasonably select the payoff strategy.

Evaluation of Machine Learning Algorithm Utilization for Lung Cancer Classification Based on Gene Expression Levels

  • Podolsky, Maxim D;Barchuk, Anton A;Kuznetcov, Vladimir I;Gusarova, Natalia F;Gaidukov, Vadim S;Tarakanov, Segrey A
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권2호
    • /
    • pp.835-838
    • /
    • 2016
  • Background: Lung cancer remains one of the most common cancers in the world, both in terms of new cases (about 13% of total per year) and deaths (nearly one cancer death in five), because of the high case fatality. Errors in lung cancer type or malignant growth determination lead to degraded treatment efficacy, because anticancer strategy depends on tumor morphology. Materials and Methods: We have made an attempt to evaluate effectiveness of machine learning algorithms in the task of lung cancer classification based on gene expression levels. We processed four publicly available data sets. The Dana-Farber Cancer Institute data set contains 203 samples and the task was to classify four cancer types and sound tissue samples. With the University of Michigan data set of 96 samples, the task was to execute a binary classification of adenocarcinoma and non-neoplastic tissues. The University of Toronto data set contains 39 samples and the task was to detect recurrence, while with the Brigham and Women's Hospital data set of 181 samples it was to make a binary classification of malignant pleural mesothelioma and adenocarcinoma. We used the k-nearest neighbor algorithm (k=1, k=5, k=10), naive Bayes classifier with assumption of both a normal distribution of attributes and a distribution through histograms, support vector machine and C4.5 decision tree. Effectiveness of machine learning algorithms was evaluated with the Matthews correlation coefficient. Results: The support vector machine method showed best results among data sets from the Dana-Farber Cancer Institute and Brigham and Women's Hospital. All algorithms with the exception of the C4.5 decision tree showed maximum potential effectiveness in the University of Michigan data set. However, the C4.5 decision tree showed best results for the University of Toronto data set. Conclusions: Machine learning algorithms can be used for lung cancer morphology classification and similar tasks based on gene expression level evaluation.

Turning STEP-NC(ISO14649) 정보를 기반한 접촉식 OMM(On-Machine Measurement) Inspection planning에 대한 연구 (A Study on the Tactile Inspection Planning for OMM based on Turning STEP-NC information (ISO14649))

  • 임충일
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회/대한산업공학회 2003년도 춘계공동학술대회
    • /
    • pp.208-216
    • /
    • 2003
  • ISO 14649 (data model for STEP-NC) is a new interface scheme or language for CAD-CAM-CNC chain under established by ISO TC184 SCI. Up to this point, the new language is mainly made for milling and turning, and other processes such as EDM will be completed in the future. Upon completion, it will be used as the international standard language for e-manufacturing paradigm by replacing the old machine-level language, so called M&G code used since 1950's. With the rich information contents included in the new language, various intelligent functions can be made by the CNC as the CNC knows what-to-make and how-to-make. In particular, On-Machine Inspection required for quality assurance in the machine level, can be done based on the information of feature­based tolerance graph. Previously, On-Machine inspection has been investigated mainly for milling operation, and only a few researches were made for turning operation without addressing the data model. In this thesis, we present a feature-based on-machine inspection process by the 4 Tasks: 1) proposing a new schema for STEP-NC data model, 2) converting the conventional tolerance scheme into that of STEP-NC, 3) modifying the tolerance graph such that the tolerance can be effectively measured by the touch probe on the machine, and 4) generating collision-free tool path for actual measurement. Task 1 is required for the incorporation of the presented method in the ISO 14649, whose current version does not much include the detailed schema for tolerance. Based on the presented schema, the tolerance represented in the conventional drafting can be changed to that of STEP-NC (Task 2). A special emphasis was given to Task 3 to make the represented tolerance accurately measurable by the touch probe on the machine even if the part setup is changed. Finally, Task 4 is converting the result of Task into the motion of touch probe. The developed schema and algorithms were illustrated by several examples including that of ISO 14649 Part 12.

  • PDF