• Title/Summary/Keyword: task response time

Search Result 233, Processing Time 0.04 seconds

A Soft Aperiodic Real-Time Task Scheduling Algorithm Supporting Maximum Slack Time (최대여유시간 제공 연성 비주기 실시간 태스크 스케줄링 알고리즘)

  • Im, Deok-Ju;Park, Seong-Han
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.37 no.4
    • /
    • pp.9-15
    • /
    • 2000
  • The purpose of this paper is to minimize the a slack computation time of the scheduling of a soft aperiodic real-time tasks in a fixed priority real-time system. The proposed algorithm reduces the computation overhead at on-line time and supports the maximum slack time assigned for aperiodic real-time tasks. The proposed algorithm has 10~20% more response time for aperiodic real-time tasks than that of Slack Stealing Algorithm that offers optimal response time in fixed priority real-time system. However, the performance of the proposed algorithm is seven times better in a scheduling overhead.

  • PDF

Implementation of Dual-Kernel based Control System and Evaluation of Real-time Control Performance for Intelligent Robots (지능형 로봇을 위한 이중 커널 구조의 제어 시스템 구현 및 실시간 제어 성능 분석)

  • Park, Jeong-Ho;Yi, Soo-Yeong;Choi, Byoung-Wook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1117-1123
    • /
    • 2008
  • This paper implements dual-kernel system using standard Linux and real-time embedded Linux for the real-time control of intelligent robot systems. Such system provides more useful services including standard Linux thread that is easy to implement complicated tasks and real-time tasks for the deterministic response to velocity control. Here, an open source real-time embedded Linux, XENOMAI, is ported on embedded target board. And for interfacing with motor controller we adopted a real-time serial device driver. The real-time task was implemented with a priority to keep the cyclic control command for trajectory control. In order to validate deterministic response of the proposed system, the performance measurement of the delay in performing trajectory control with feedback loop is evaluated with non real-time standard Linux. The proposed software architecture is anticipated to take advantage of features in both standard Linux and real-time operating systems for the intelligent robot systems.

The Significance of Uniform Connectedness on Perceptual Organization (형태의 조직화에서 균질 연결성의 의의)

  • 박창호
    • Korean Journal of Cognitive Science
    • /
    • v.15 no.2
    • /
    • pp.17-22
    • /
    • 2004
  • Two experiments were executed to investigate the effect of uniform connectedness systematically using the identification task of briefly exposed forms. Previous study observed negative repetition effected (i.e., NRE) in the identification task of two parentheses either connected or disconnected vertically, which was interpreted as an evidence against the hypothesis of uniform connectedness. Experiment I tested the hypothesis that NRE resulted from the Perceptual set or anticipating disconnected displays. Experiment 2 tested the hypothesis that NRE resulted from relatively shorter exposure time. Using partial report task asking participants to report only the cued target and whole report task asking them to report the whole pattern with only connected displays, experiment 1 observed NRE respectively. Experiment 2, with longer exposure time equivalent to 83% accuracy and response bias controlled by use of catch trials, obtained the same NRE. Those results seems to indicate that uniformly connected forms were processed analytically by perceivers without task demand and futhermore, the hypothesis of uniform connectedness as a principle of perceptual organization is not plausible.

  • PDF

Effect of Driver's Cognitive Distraction on Driver's Physiological State and Driving Performance

  • Kim, Jun-Hoe;Lee, Woon-Sung
    • Journal of the Ergonomics Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.371-377
    • /
    • 2012
  • Objective: The aim of this study is to investigate effect of driver's cognitive distraction on driver's physiological state and driving performance, and then to determine parameters appropriate for detecting the cognitive distraction. Background: Driver distraction is a major cause of traffic accidents and poses a serious threat to traffic safety due to ever increasing use of in-vehicle information systems and mobile phones during driving. Cognitive distraction, among four different types of distractions, prevents a driver from processing traffic information correctly and adapting to change in surround vehicle behavior in time. However, the cognitive distraction is more difficult to detect because it normally does not involve significant change in driver behavior. Method: A full-scale driving simulator was used to create virtual driving environment and situations. Participants in the experiment drove the driving simulator in three different conditions: attentive driving with no secondary task, driving and conducting secondary task of adding numbers, and driving and conducting secondary task of conversing with an experimenter. Parameters related with driver's physiological state and driving performance were measured and analyzed for their change. Results: The experiment results show that driver's cognitive distraction, induced by secondary task of addition and conversation during driving, increased driver's cognitive workload, and indeed brought change in driver's physiological state and degraded driving performance. Conclusion: The galvanic skin response, pupil size, steering reversal rate, and driver reaction time are shown to be statistically significant for detecting cognitive distraction. The appropriate combination of these parameters will be used to detect the cognitive distraction and estimate risk of traffic accidents in real-time for a driver distraction warning system.

Development of Paradigm for Measuring Prospective Memory Function (미래기억 기능을 측정하기 위한 패러다임의 고안)

  • Park, Ji-Won;Kwon, Yong-Hyun;Kim, Hyun-Jung
    • Physical Therapy Korea
    • /
    • v.12 no.3
    • /
    • pp.67-73
    • /
    • 2005
  • Prospective memory (PM) is related to remember to carry out a previously intented behaviour. The purpose of this study was to develop a paradigm for measuring PM function to diagnosis in mild cognitive impairment 1 or brain injury in patients 2. among brain injured patients Thirty-eight normal healthy subjects participated in current study. The paradigm was composed of four conditions: a baseline and three intention conditions (expectation, execution 1 and 2). In the expectation condition, subjects were asked to make a new response to intented stimuli during ongoing task, but the intented stimuli never occurred. In the execution 1 (one type of expected stimulus) and 2 (two types of expected stimuli), the intended stimuli did occur in 20% of trials. The reaction time and error rate were calculated in each condition. Repeated measures using ANOVA of subject's mean reaction times (RTs) and mean error rates (ERs) showed main effects of conditions during ongoing task. The comparison of PM tasks in executive condition 1 and 2 also showed significance in RTs and ERs. This paradigm reflects sufficiently the performance of prospective memory function during ongoing task in normal individuals. Thus, we suggest that the paradigm will be helpful to study neural network of PM function using brain imaging techniques and diagnosis of PM dysfunction.

  • PDF

Rapid response calculation of LNG cargo containment system under sloshing load using wavelet transformation

  • Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.227-245
    • /
    • 2013
  • Reliable strength assessment of the Liquefied Natural Gas (LNG) cargo containment system under the sloshing impact load is very difficult task due to the complexity of the physics involved in, both in terms of the hydrodynamics and structural mechanics. Out of all those complexities, the proper selection of the design sloshing load which is applied to the structural model of the LNG cargo containment system, is one of the most challenging one due to its inherent randomness as well as the statistical analysis which is tightly linked to the design sloshing load selection. In this study, the response based strength assessment procedure of LNG cargo containment system has been developed and proposed as an alternative design methodology. Sloshing pressure time history, measured from the model test, is decomposed into wavelet basis function targeting the minimization of the number of the basis function together with the maximization of the numerical efficiency. Then the response of the structure is obtained using the finite element method under each wavelet basis function of different scale. Finally, the response of the structure under entire sloshing impact time history is rapidly calculated by synthesizing the structural response under wavelet basis function. Through this analysis, more realistic response of the system under sloshing impact pressure can be obtained without missing the details of pressure time history such as rising pattern, oscillation due to air entrapment and decay pattern and so on. The strength assessment of the cargo containment system is then performed based on the statistical analysis of the stress peaks selected out of the obtained stress time history.

The role background noise intensity on Physiological activity during performance of mental task (인지과제 수행시 배경 소음의 크기에 따른 생리적 반응차)

  • Sohn Jin-Hun;Sokhadze Estate M.;Min Yoon-Ki;Lee Kyung-Hwa;Choi Sangsup
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.269-273
    • /
    • 1999
  • Combination of mental stress task with noise background is a traditional tool employed in psychophysiology. However, intensity of background noise is a factor affecting both performance on test and psychophysiological responses associated with stress evoked by mental load in noisy environment. In the current study on 7 subjects we analyzed the influence of white noise (WN) intensity (55, 70, and 85 dB[A] ) on psychophysiological responses during word recognition test performed on noise background. There were recorded following physiological variables: electrodermal activity (EDA) , namely, skin conductance level (SCL), skin conductance response (SCR) amplitude (SCR-A), rise time and total number of SCRs (N-SCR); cardiovascular activity, e.g., heart rate (HR), respiratory sinus arrhythmia (RSA) index, pulse transit time (PTT), finger pulse volume (PV), skin temperature (SKT) and respiratory activity, such as respiration rate (RESP-R) and inspiration wane amplitude (RESP-A) during baseline resting state and 40 s long performance on 3 similar Korean word recognition tests with different WN intensity (55, 70, and 85 dB). Electrodermal responses (SCR-A, SCL, N-SCR) demonstrated gradual increment with increased intensity of noise, and this increase of response magnitude with higher intensity of noise was typical also for r skin temperature (phasic SKT decrease) and pulse volume (phasic and tonic PV decrease). However, some cardiovascular and respiratory responses did not exhibit same tendency of gradual increase of reactivity , namely HR, as well as RESP-R and RESP-A showed decrement of response magnitudes. Important finding in terms of cardiovascular reactivity was that 55 and 70dB evoked similar profiles, while 85dB WN resulted in significantly different profile of reactions, suggesting that there exists a threshold level after which intensive auditory stimulation elicits psychophyslological responses pattern of different quality. There are discussed potential autonomic mechanism involved in mediation of observed physiological responses.

  • PDF

An Experimental Evaluation on Human Error Hazards of Task using Digital Device (디지털 기기 기반 직무 수행 시 인적오류위험성에 대한 실험적 평가)

  • Oh, Yeon Ju;Jang, Tong Il;Lee, Yong Hee
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.1
    • /
    • pp.47-53
    • /
    • 2014
  • The application of advanced Main Control Room(MCR) is accompanied with lots of changes and different forms and features through the virtue of new digital technologies. The characteristics of these digital technologies and devices give many opportunities to the interface management, and can be integrated into a compact single workstation in advanced MCR so that workers can operate the plant with minimum physical burden under any operation conditions. However, these devices may introduce new types of human errors and thus a means to evaluate and prevent such errors is needed, especially those related to characteristics of digital devices. This paper reviewed the new type of human error hazards of tasks based on digital devices and surveyed researches on physiological assessment related to human error. An experiment was performed to verify human error hazards by physiological responses such as EEG which was measured to evaluate the cognitive workload of operators. And also, the performances of four tasks which are representative in human error hazard tasks based on digital devices were compared. Response time, ${\beta}$ power spectrum rate of each task by EEG, and mental workload by NASA-TLX were evaluated. In the results of the experiment, the rate of the ${\beta}$ power was increased in the task 1 and task 4 which are searching and navigating task and memory task of hierarchical information, respectively. In case of the mental workload, in most of evaluation items, task 1 and 4 were highly rated comparatively. In this paper, human error hazards might be identified by highly cognitive workload. Conclusively, it was concluded that the predictive method which is utilized in this paper and an experimental verification can be used to ensure the safety when applying the digital devices in Nuclear Power Plants (NPPs).

Seismic fragility assessment of isolated structures by using stochastic response database

  • Eem, Seung-Hyun;Jung, Hyung-Jo
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.389-398
    • /
    • 2018
  • The seismic isolation system makes a structure isolated from ground motions to protect the structure from seismic events. Seismic isolation techniques have been implemented in full-scale buildings and bridges because of their simplicity, economic effectiveness, inherent stability and reliability. As for the responses of an isolated structure due to seismic events, it is well known that the most uncertain aspects are the seismic loading itself and structural properties. Due to the randomness of earthquakes and uncertainty of structures, seismic response distributions of an isolated structure are needed when evaluating the seismic fragility assessment (or probabilistic seismic safety assessment) of an isolated structure. Seismic response time histories are useful and often essential elements in its design or evaluation stage. Thus, a large number of non-linear dynamic analyses should be performed to evaluate the seismic performance of an isolated structure. However, it is a monumental task to gather the design or evaluation information of the isolated structure from too many seismic analyses, which is impractical. In this paper, a new methodology that can evaluate the seismic fragility assessment of an isolated structure is proposed by using stochastic response database, which is a device that can estimate the seismic response distributions of an isolated structure without any seismic response analyses. The seismic fragility assessment of the isolated nuclear power plant is performed using the proposed methodology. The proposed methodology is able to evaluate the seismic performance of isolated structures effectively and reduce the computational efforts tremendously.

Design and Implementation of a Scalable Real-Time Sensor Node Platform (확장성 및 실시간성을 고려한 실시간 센서 노드 플랫폼의 설계 및 구현)

  • Jung, Kyung-Hoon;Kim, Byoung-Hoon;Lee, Dong-Geon;Kim, Chang-Soo;Tak, Sung-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8B
    • /
    • pp.509-520
    • /
    • 2007
  • In this paper, we propose a real-time sensor node platform that guarantees the real-time scheduling of periodic and aperiodic tasks through a multitask-based software decomposition technique. Since existing sensor networking operation systems available in literature are not capable of supporting the real-time scheduling of periodic and aperiodic tasks, the preemption of aperiodic task with high priority can block periodic tasks, and so periodic tasks are likely to miss their deadlines. This paper presents a comprehensive evaluation of how to structure periodic or aperiodic task decomposition in real-time sensor-networking platforms as regard to guaranteeing the deadlines of all the periodic tasks and aiming to providing aperiodic tasks with average good response time. A case study based on real system experiments is conducted to illustrate the application and efficiency of the multitask-based dynamic component execution environment in the sensor node equipped with a low-power 8-bit microcontroller, an IEEE802.15.4 compliant 2.4GHz RF transceiver, and several sensors. It shows that our periodic and aperiodic task decomposition technique yields efficient performance in terms of three significant, objective goals: deadline miss ratio of periodic tasks, average response time of aperiodic tasks, and processor utilization of periodic and aperiodic tasks.