• Title/Summary/Keyword: targeted delivery

Search Result 132, Processing Time 0.02 seconds

Development of Two-Component Nanorod Complex for Dual-Fluorescence Imaging and siRNA Delivery

  • Choi, Jin-Ha;Oh, Byung-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1291-1299
    • /
    • 2014
  • Recently, multifunctional nanomaterials have been developed as nanotherapeutic agents for cellular imaging and targeted cancer treatment because of their ease of synthesis and low cytotoxicity. In this study, we developed a multifunctional, two-component nanorod consisting of gold (Au) and nickel (Ni) blocks that enables dual-fluorescence imaging and the targeted delivery of small interfering RNA (siRNA) to improve cancer treatment. Fluorescein isothiocyanate-labeled luteinizing hormone-releasing hormone (LHRH) peptides were attached to the surface of a Ni block via a histidine-tagged LHRH interaction to specifically bind to a breast cancer cell line, MCF-7. The Au block was modified with TAMRA-labeled thiolated siRNA in order to knock down the vascular endothelial growth factor protein to inhibit cancer growth. These two-component nanorods actively targeted and internalized into MCF-7 cells to induce apoptosis through RNA interference. This study demonstrates the feasibility of using two-component nanorods as a potential theranostic in breast cancer treatment, with capabilities in dual imaging and targeted gene delivery.

Selective Gene Transfer to Hepatocellular Carcinoma Using Homing Peptide-Grafted Cationic Liposomes

  • Tu, Ying;Kim, Ji-Seon
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.4
    • /
    • pp.821-827
    • /
    • 2010
  • Gene delivery that provides targeted delivery of therapeutic genes to the cells of a lesion enhances therapeutic efficacy and reduces toxic side effects. This process is especially important in cancer therapy when it is advantageous to avoid unwanted damage to healthy normal cells. Incorporating cancer-specific ligands that recognize receptors overexpressed on cancer cells can increase selective binding and uptake and, as a result, increase targeted transgene expression. In this study, we investigated whether a peptide capable of homing to hepatocellular carcinoma (HCC) could facilitate targeted gene delivery by cationic liposomes. This homing peptide (HBP) exhibited selective binding to a human hepatocarcinoma cell line, HepG2, at a concentration ranging from 5 to 5,000 nM. When conjugated to a cationic liposome, HBP substantially increased cellular internalization of plasmid DNA to increase the transgene expression in HepG2 cells. In addition, there was no significant enhancement in gene transfer detected for other human cell lines tested, including THLE-3, AD293, and MCF-7 cells. Therefore, we demonstrate that HBP provides targeted gene delivery to HCC by cationic liposomes.

Position Control of Capsule Filled with Magnetic Fluid for Targeted Drug Delivery System (지적투약시스템을 위한 자성유체 캡슐의 위치 제어)

  • Ahn Chang-ho;Nam Yun-Joo;Park Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1166-1173
    • /
    • 2004
  • In this paper, in order to apply magnetic fluid with superparamagnetic property as the substitute of ferromagnetic materials, physical properties of magnetic fluid are investigated. A targeted drug delivery system using a capsule filled magnetic fluid is proposed where a magnetic fluid capsule and cylinders are considered as a drug and vital organs, respectively. The dynamic governing equation of this system first is derived. Fluid viscosity, clearance between a cylinder and a magnetic fluid capsule, and levitation height with respect to different cylinder height are considered as major parameters to evaluate dynamic characteristics of the system. The experiments and simulations for the position control of the magnetic fluid capsule in various cylinders are conducted using PID controller. The results show that magnetic fluid with the superparamagnetic property can be applied to a targeted drug delivery system.

Targeted Polymeric Gene Delivery for Anti-angiogenic Tumor Therapy

  • Kim, Won-Jong;Kim, Sung-Wan
    • Macromolecular Research
    • /
    • v.15 no.2
    • /
    • pp.100-108
    • /
    • 2007
  • Gene therapy has become a promising strategy for the treatment of genetically based diseases, such as cancer, which are currently considered incurable. A major obstacle in the field of cancer gene therapy is the development of a safe and efficient delivery system for therapeutic gene transfer. Non-viral vectors have attracted great interest, as they are simple to prepare, stable, easy to modify and relatively safe compared to viral vectors. In this review, an insight into the strategies developed for polyethylenimine (PEI)-based non-viral vectors has been provide, including improvement of the polyplex properties by incorporating hydrophilic spacer, poly(ethylene glycol) (PEG). Moreover, this review will summarize the strategies for the tumor targeting. Specifically, a targeted polymeric gene delivery system, PEI-g-PEG-RGD, will be introduced as an efficient gene delivery vector for tumor therapy, including its functional analysis both in vitro and in vivo.

Recent Progress in Drug Delivery Systems for Anticancer Agents

  • Kim, Chong-Kook;Lim, Soo-Jeong
    • Archives of Pharmacal Research
    • /
    • v.25 no.3
    • /
    • pp.229-239
    • /
    • 2002
  • Recent progress in understanding the molecular basis of cancer brought out new materials such as oligonucleotides, genes, peptides and proteins as a source of new anticancer agents. Due to their macromolecular properties, however, new strategies of delivery for them are required to achieve their full therapeutic efficacy in clinical setting. Development of improved dosage forms of currently marketed anticancer drugs can also enhance their therapeutic values. Currently developed delivery systems for anticancer agents include colloidal systems (liposomes, emulsions, nanoparticles and micelles), polymer implants and polymer conjugates. These delivery systems have been able to provide enhanced therapeutic activity and reduced toxicity of anticancer agents mainly by altering their pharmacokinetics and biodistribution. Furthermore, the identification of cell-specific receptor/antigens on cancer cells have brought the development of ligand- or antibody-bearing delivery systems which can be targeted to cancer cells by specific binding to receptors or antigens. They have exhibited specific and selective delivery of anticancer agents to cancer. As a consequence of extensive research, clinical development of anticancer agents utilizing various delivery systems is undergoing worldwide. New technologies and multidisciplinary expertise to develop advanced drug delivery systems, applicable to a wide range of anticancer agents, may eventually lead to an effective cancer therapy in the future.

Doxorubicin-loaded PEI-silica Nanoparticles for Cancer Therapy

  • Heekyung Park;Seungho Baek;Donghyun Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.570-575
    • /
    • 2023
  • Targeted anticancer drug delivery systems are needed to enhance therapeutic efficacy by selectively delivering drugs to tumor cells while minimizing off-target effects, improving treatment outcomes and reducing toxicity. In this study, a silica-based nanocarrier capable of targeting drug delivery to cancer cells was developed. First, silica nanoparticles were synthesized by the Stöber method using the surfactant cetyltrimethylammonium bromide (CTAB). Increasing the ratio of EtOH in the solvent produced uniformly spherical silica nanoparticles. Washing the nanoparticles removed unreacted residues, resulting in a non-toxic carrier for drug delivery in cells. Upon surface modification, the pH-responsive polymer, polyethyleneimine (PEI) exhibited slow doxorubicin release at pH 7.4 and accelerated release at pH 5.5. By exploiting this feature, we developed a system capable of targeted drug release in the acidic tumor microenvironment.

Folate-Targeted Nanostructured Lipid Carriers (NLCs) Enhance (Letrozol) Efficacy in MCF-7 Breast Cancer Cells

  • Sabzichi, Mehdi;Mohammadian, Jamal;Khosroushahi, Ahmad Yari;Bazzaz, Roya;Hamishehkar, Hamed
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.12
    • /
    • pp.5185-5188
    • /
    • 2016
  • Objective: Targeted-drug-delivery based lipid nanoparticles has emerged as a new and effective approach in cancer chemotherapy. Here, we investigated the ability of folate-modified nanostructured lipid carriers (NLCs) to enhance letrozol (LTZ) efficacy in MCF-7 breast cancer cells. Methods: New formulations were evaluated regarding to particle size and scanning electron microscope (SEM) features. Anti-proliferative effects of LTZ loaded nanoparticles were examined by MTT assay. To understand molecular mechanisms of apoptosis and cell cycle progression, flow cytometric assays were applied. Results: Optimum size of nanoparticles was obtained in mean average of $98{\pm}7nm$ with a poly dispersity index (PDI) of 0.165. The IC50 value was achieved for LTZ was $2.2{\pm}0.2{\mu}M$. Folate-NLC-LTZ increased the percentage of apoptotic cells from 24.6% to 42.2% compared LTZ alone (p<0.05). Furthermore, LTZ loaded folate targeted NLCs caused marked accumulation of cells in the subG1 phase. Conclusion: Taken together, our results concluded that folate targeted LTZ can be considered as potential delivery system which may overcome limitations of clinical application of LTZ and improve drug efficacy in tumor tissue.

Biotin-Conjugated Block Copolymeric Nanoparticles as Tumor-Targeted Drug Delivery Systems

  • Kim, So-Yeon;Cho, Seung-Hea;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.646-655
    • /
    • 2007
  • To achieve targeted drug delivery for chemotherapy, a ligand-mediated nanoparticulate drug carrier was designed, which could identity a specific receptor on the surfaces of tumor cells. Biodegradable poly(ethylene oxide)/poly$({\varepsilon}-caprolactone)$ (PEG/PCL) amphiphilic block copolymers coupled to biotin ligands were synthesized with a variety of PEG/PCL compositions. Block copolymeric nanoparticles harboring the anticancer drug paclitaxel were prepared via micelle formation in aqueous solution. The size of the biotin-conjugated PEG/PCL nanoparticles was determined by light scattering measurements to be 88-118 nm, depending on the molecular weight of the block copolymer, and remained less than 120 nm even after paclitaxel loading. From an in vitro release study, biotin-conjugated PEG/PCL nanoparticles containing paclitaxel evidenced sustained release profiles of the drug with no initial burst effect. The biotin-conjugated PEG/PCL block copolymer itself evidenced no significant adverse effects on cell viability at $0.005-1.0{\mu}g/mL$ of nanoparticle suspension regardless of cell type (normal human fibroblasts and HeLa cells). However, biotin-conjugated PEG/PCL harboring paclitaxel evidenced a much higher cytotoxicity for cancer cells than was observed in the PEG/PCL nanoparticles without the biotin group. These results showed that the biotin-conjugated nanoparticles could improve the selective delivery of paclitaxel into cancer cells via interactions with over-expressed biotin receptors on the surfaces of cancer cells.

Cancer-targeted photothermal therapy using aptamer-conjugated gold nanoparticles

  • Hong, Eun Ji;Kim, Yoon-Seok;Choi, Dae Gun;Shim, Min Suk
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.429-436
    • /
    • 2018
  • Targeted intracellular delivery of therapeutic agents is one of the great challenges for cancer treatment. Aptamers that bind to a variety of biological targets have emerged as new targeting moieties with high specificity for targeted cancer therapy. In this study, near-infrared (NIR) light-absorbing hollow gold nanocages (AuNCs) were synthesized and conjugated with AS1411 aptamer to achieve cancer-targeted photothermal therapy. AuNC functionalized with PEG and AS1411 (AS1411-PEG-AuNC) exhibited selective cellular uptake in breast cancer cells due to selective binding of AS1411 to nucleolin, a protein that is over-expressed in cancer cells over normal cells. As a result, AS1411-PEG-AuNC showed cancer-targeted photothermal activity. This study demonstrates that aptamer-conjugated AuNCs are effective tumor-targeting photothermal agents.