• 제목/요약/키워드: target-free feature detection

검색결과 3건 처리시간 0.018초

가속도를 이용한 인공신경망 기반 실시간 손상검색기법 (ANN-based Real-Time Damage Detection Algorithm using Output-only Acceleration Signals)

  • 김정태;박재형;도한성
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.43-48
    • /
    • 2007
  • In this study, an ANN-based damage detection algorithm using acceleration signals is developed for alarming locations of damage in beam-type structures. A new ANN-algorithm using output-only acceleration responses is designed for damage detection in real time. The cross-covariance of two acceleration signals measured at two different locations is selected as the feature representing the structural condition. Neural networks are trained for potential loading patterns and damage scenarios of the target structure for which its actual loadings are unknown. The feasibility and practicality of the proposed method are evaluated from laboratory-model tests on free-free beams for which accelerations were measured before and after several damage cases.

  • PDF

Target-free vision-based approach for vibration measurement and damage identification of truss bridges

  • Dong Tan;Zhenghao Ding;Jun Li;Hong Hao
    • Smart Structures and Systems
    • /
    • 제31권4호
    • /
    • pp.421-436
    • /
    • 2023
  • This paper presents a vibration displacement measurement and damage identification method for a space truss structure from its vibration videos. Features from Accelerated Segment Test (FAST) algorithm is combined with adaptive threshold strategy to detect the feature points of high quality within the Region of Interest (ROI), around each node of the truss structure. Then these points are tracked by Kanade-Lucas-Tomasi (KLT) algorithm along the video frame sequences to obtain the vibration displacement time histories. For some cases with the image plane not parallel to the truss structural plane, the scale factors cannot be applied directly. Therefore, these videos are processed with homography transformation. After scale factor adaptation, tracking results are expressed in physical units and compared with ground truth data. The main operational frequencies and the corresponding mode shapes are identified by using Subspace Stochastic Identification (SSI) from the obtained vibration displacement responses and compared with ground truth data. Structural damages are quantified by elemental stiffness reductions. A Bayesian inference-based objective function is constructed based on natural frequencies to identify the damage by model updating. The Success-History based Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE) is applied to minimise the objective function by tuning the damage parameter of each element. The locations and severities of damage in each case are then identified. The accuracy and effectiveness are verified by comparison of the identified results with the ground truth data.

보 구조물의 가속도 신호를 이용한 인공신경망 기반 실시간 손상검색기법 (ANN-Based Real-Time Damage Detection Technique Using Acceleration Signals in Beam-Type Structures)

  • 박재형;이용환;김정태
    • 한국전산구조공학회논문집
    • /
    • 제20권3호
    • /
    • pp.229-237
    • /
    • 2007
  • 본 논문에서는 보 구조물의 실시간 손상위치 경보를 위해 가속도 신호를 이용한 인공신경망기반 손상검색기법을 제안하였다. 이를 위해 먼저, 실시간 손상검색을 위해 가속도 응답신호만을 이용하는 새로운 인공신경망 알고리즘을 설계하였다. 구조물의 손상상태를 나타내는 특징으로 서로 다른 두 위치에서 측정된 가속도 신호의 교차공분산 값을 이용하였다. 다음으로 실제 하중조건을 모르는 상황을 고려하여 다양한 하중패턴에 따른 복수 신경망을 구성하였으며, 각각의 신경망 학습을 위한 손상시나리오를 선정하였다. 마지막으로 양단 자유보 모형실험을 통해 제안된 기법의 유용성과 적용성을 평가하였다.