• Title/Summary/Keyword: target-free feature detection

Search Result 3, Processing Time 0.02 seconds

ANN-based Real-Time Damage Detection Algorithm using Output-only Acceleration Signals (가속도를 이용한 인공신경망 기반 실시간 손상검색기법)

  • Kim, Jung-Tae;Park, Jae-Hyung;Do, Han-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.43-48
    • /
    • 2007
  • In this study, an ANN-based damage detection algorithm using acceleration signals is developed for alarming locations of damage in beam-type structures. A new ANN-algorithm using output-only acceleration responses is designed for damage detection in real time. The cross-covariance of two acceleration signals measured at two different locations is selected as the feature representing the structural condition. Neural networks are trained for potential loading patterns and damage scenarios of the target structure for which its actual loadings are unknown. The feasibility and practicality of the proposed method are evaluated from laboratory-model tests on free-free beams for which accelerations were measured before and after several damage cases.

  • PDF

Target-free vision-based approach for vibration measurement and damage identification of truss bridges

  • Dong Tan;Zhenghao Ding;Jun Li;Hong Hao
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.421-436
    • /
    • 2023
  • This paper presents a vibration displacement measurement and damage identification method for a space truss structure from its vibration videos. Features from Accelerated Segment Test (FAST) algorithm is combined with adaptive threshold strategy to detect the feature points of high quality within the Region of Interest (ROI), around each node of the truss structure. Then these points are tracked by Kanade-Lucas-Tomasi (KLT) algorithm along the video frame sequences to obtain the vibration displacement time histories. For some cases with the image plane not parallel to the truss structural plane, the scale factors cannot be applied directly. Therefore, these videos are processed with homography transformation. After scale factor adaptation, tracking results are expressed in physical units and compared with ground truth data. The main operational frequencies and the corresponding mode shapes are identified by using Subspace Stochastic Identification (SSI) from the obtained vibration displacement responses and compared with ground truth data. Structural damages are quantified by elemental stiffness reductions. A Bayesian inference-based objective function is constructed based on natural frequencies to identify the damage by model updating. The Success-History based Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE) is applied to minimise the objective function by tuning the damage parameter of each element. The locations and severities of damage in each case are then identified. The accuracy and effectiveness are verified by comparison of the identified results with the ground truth data.

ANN-Based Real-Time Damage Detection Technique Using Acceleration Signals in Beam-Type Structures (보 구조물의 가속도 신호를 이용한 인공신경망 기반 실시간 손상검색기법)

  • Park, Jae-Hyung;Lee, Yong-Hwan;Kim, Jeong-Tae
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.229-237
    • /
    • 2007
  • In this study, an artificial neural network (ANN)-based damage detection algorithm using acceleration signals is developed for real-time alarming locations of damage in beam-type structures. A new ANN-algorithm using output-only acceleration responses is designed tot damage detection in real time. The cross-covariance of two acceleration-signals measured at two different locations is selected as the feature representing the structural condition. Neural networks are trained lot potential loading Patterns and damage scenarios of the target structure for which its actual loadings are unknown. The feasibility and practicality of the proposed method are evaluated from laboratory-model tests on free-free beams for which accelerations were measured before and after several damage cases.