• Title/Summary/Keyword: tara gum

Search Result 5, Processing Time 0.02 seconds

Rheological Characteristics and Molecular Weight of Ammonium-Sulfate Fractions of Tara Gum (염석법에 의한 타라검 분획들의 분자량 및 리올로지 특성)

  • Kim, Kyeong-Yee
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.3
    • /
    • pp.293-298
    • /
    • 2015
  • This study aimed at characterizing the rheological properties and molecular weight of tara gum fractionated with ammonium sulfate. Tara gum was separated into six fractions (F1-F6) at different concentrations of ammonium sulfate, ranging from 12.21 to 28.67% (w/w). The yield of the tara gum fractions ranged between 4.98 and 17.47%, and their intrinsic viscosity ranged from 9.38 to 12.44 dL/g. The highest values of Huggins coefficient (k') and viscosity-molecular mass were observed in fraction F3. The shear viscosity of the tara gum fractions was measured by a cone-plate viscometer, clearly showing shear thinning behavior. Size-exclusion chromatography results showed that the molecular weight ranged between 635.42 and 776.71 kg/mol, and the F3 fraction exhibited higher values of molecular weight.

Dynamic Rheological Comparison of Selected Gum Solutions

  • Choi, Su-Jin;Chu, So-Young;Yoo, Byoung-Seung
    • Food Science and Biotechnology
    • /
    • v.15 no.3
    • /
    • pp.474-477
    • /
    • 2006
  • Dynamic rheological properties of commercial 0.8, 1.0, and 1.2% gums [carboxylmethylcellulose (CMC), guar gum, hydroxypropylmethylcellulose (HPMC), tara gum, and xanthan gum], which can be dissolved in cold water, were investigated by small-deformation oscillatory measurements. Magnitudes of storage (G') and loss (G") moduli increased with increasing concentration of gum solutions except for xanthan gum. Guar gum exhibited greatest G' and G" values among all gums except for G' value at 0.8% concentration. Slopes of G' and G" decreased with increasing concentration of gum solutions except for xanthan gum. Tan ${\delta}$ (G"/G') values decreased with increasing concentration of gum solutions except for xanthan gum. Tan ${\delta}$ values of xanthan gum solutions were much lower than those of other gum solutions, indicating that xanthan gum solutions were predominantly more elastic than viscous.

Combined Effects of Vital Gluten, Gum, Emulsifier, and Enzyme on the Properties of Rice Bread (활성글루텐, 검, 유화제 및 효소제의 복합첨가에 따른 쌀빵의 품질특성)

  • Kim, Kyung-Eun;Lee, Young-Tack
    • Food Engineering Progress
    • /
    • v.13 no.4
    • /
    • pp.320-325
    • /
    • 2009
  • The effects of adding additives such as vital gluten, gum, emulsifier, and enzyme to rice flour on baking quality were examined. The effects of different gums on the pasting and dough properties of rice flour containing vital gluten were studied using a Rapid Visco Analyzer (RVA) and a Brabender farinograph. The RVA peak, breakdown, and final viscosities decreased with the addition of gums, while setback viscosity increased. The farinogram showed that rice flour supplemented with gums such as tara gum, guar gum, and locust bean gum (LBG) increased water absorption and dough stability, yielding strengthened dough similar to wheat flour dough. The addition of guar or tara gum/sodium stearoyl lactylate (SSL)/fungal $\alpha$-amylase (AMYL) or glucose oxidase (GO) blend improved the volume and reduced the crumb firmness of rice bread prepared from rice flour containing 14% vital gluten. Therefore, the combined addition of gum, emulsifier and enzyme into rice flour significantly improved the rice bread quality, allowing the decrease of the vital gluten level in rice bread formula.

Rheological Differences of Waxy Barley Flour Dispersions Mixed with Various Gums

  • Kim, Chong-Yeon;Yoo, Byoungseung
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.1
    • /
    • pp.56-61
    • /
    • 2017
  • Rheological properties of waxy barley flour (WBF) dispersions mixed with various gums (carboxyl methyl celluleose, guar gum, gum arabic, konjac gum, locust bean gum, tara gum, and xanthan gum) at different gum concentrations were examined in steady and dynamic shear. WBF-gum mixture samples showed a clear trend of shear-thinning behavior and had a non-Newtonian nature with yield stress. Rheological tests indicated that the flow and dynamic rheological parameter (apparent viscosity, consistency index, yield stress, storage modulus, and loss modulus) values of WBF dispersions mixed with gums, except for gum arabic, were significantly higher than those of WBF with no gum, and also increased with an increase in gum concentration. In particular, konjac gum at 0.6% among other gums showed the highest rheological parameter values. Tan ${\delta}$ values of WBF-xanthan gum mixtures were lower than those of other gums, showing that there is a more pronounced synergistic effect on the elastic properties of WBF in the presence of xanthan gum. Such synergistic effect was hypothesized by considering thermodynamic compatibility between xanthan gum and WBF. These rheological results suggest that in the WBF-gum mixture systems, the addition of gums modified the flow and viscoelastic properties of WBF, and that these modifications were dependent on the type of gum and gum concentration.

Steady and Dynamic Shear Rheological Properties of Buckwheat Starch-galactomannan Mixtures

  • Choi, Dong-Won;Chang, Yoon-Hyuk
    • Preventive Nutrition and Food Science
    • /
    • v.17 no.3
    • /
    • pp.192-196
    • /
    • 2012
  • This study investigated the effects of galacomannans (guar gum, tara gum, and locust bean gum) on the rheological properties of buckwheat starch pastes under steady and dynamic shear conditions. The power law and Casson models were applied to describe the flow behavior of the buckwheat starch and galactomannan mixtures. The values of the apparent viscosity (${\eta}_{a,100}$), consistency index (K), and yield stress (${\sigma}_{oc}$) for buckwheat starch-galactomannan mixtures were significantly greater than those for the control, indicating that there was a high synergism of the starch with galactomannans. The magnitudes of storage modulus (G') and loss modulus (G") for the starch-galactomannan mixtures increased with increasing frequency (${\omega}$). The dynamic moduli (G', G"), and complex viscosity (${\eta}^*$) for the buckwheat starch-galactomannan mixtures were significantly higher than those for the control.