• Title/Summary/Keyword: tanks

Search Result 1,340, Processing Time 0.025 seconds

Assessing the Geometric Integrity of Cylindrical Storage Tanks: A Comparative Study Using Static Terrestrial Laser Scanning and Total Station

  • Mansour Alghamdi;Jinha Jung
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.243-255
    • /
    • 2024
  • This study compares Static Terrestrial Laser Scanning (STLS)with the conventional Total Station (TS) method for the geometric assessment of cylindrical storage tanks. With the crucial need for maintaining tank integrity in the oil and gas industry, STLS and TS methods are evaluated for their efficacy in assessing tank deformations. Using STLS and TS, the roundness and verticality of two cylindrical tanks were examined. A deformation analysis based on American Petroleum Institute (API) standards was then provided. Key objectives included comparing the two methods according to API standards, evaluating the workflow for STLS point cloud processing, and presenting the pros and cons of the STLS method for tank geometric assessment. The study found that STLS, with its detailed and high-resolution data acquisition, offers a substantial advantage in having a comprehensive structural assessment over TS. However, STLS requires more processing time and prior knowledge about the data to tune certain parameters and achieve accurate assessment. The project outcomes intend to enhance industry professionals' understanding of applying STLS and TS to tank assessments, helping them choose the best method for their specific requirements.

Experimental investigation of the effect of baffles on the efficiency improvement of irrigation sedimentation tank structures

  • Nouri, Alireza Zamani;Heydari, Mohammad Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.63 no.4
    • /
    • pp.567-574
    • /
    • 2017
  • Sedimentation tanks are essential structures to filter the suspended sediments in the inlet flow which are constructed at the inlet of the basins forked from rivers and irrigation canals. The larger the constructed tank, the better the sedimentation process is conducted. However, the construction and dredging costs increase. In this regard, improving the performance and sedimentation efficiency seem necessary by alternative methods. One of these effective methods is using baffle plates. Most of the studies carried out in this field are on the use of these baffles in the primary and secondary sedimentation tanks. Hence, this study is carrier out with the objective of increasing the retention efficiency in the irrigation sedimentation tanks using baffles. To reach this goal, the experiments were carried out in a flume with length 8 meters, width 0.3 meters, and height 0.5 meters, considering a sedimentation tanks with a length of 3 meters, in three different inlet concentration, three flow rates and three Froude numbers. The baffles were mounted at the bottom of the tank and the effects of the angle, height and position in the tanks were investigated. The results showed that on average, employing the baffles increased the sedimentation efficiency 5 to 6% and the highest value was obtained for angle 60 with respect to the flow direction. According to the results of this study, the most favorable height and position of these baffles were obtained to be in 40% of the depth of the flow and 50% of the length of the sedimentation tank, respectively. Also, by increasing the number of baffles, the sedimentation efficiency decreased. Regarding the sedimentation regions in this case, more than 80% of the settled sediments were observed in the middle of the tank measured from the inlet.

The effect of composite-elastomer isolation system on the seismic response of liquid-storage tanks: Part I

  • Shahrjerdi, A.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.513-528
    • /
    • 2018
  • A typical viable technique to decrease the seismic response of liquid storage tanks is to isolate them at the base. Base-isolation systems are an efficient and feasible solution to reduce the vulnerability of structures in high seismic risk zones. Nevertheless, when liquid storage tanks are under long-period shaking, the base-isolation systems could have different impacts. These kinds of earthquakes can damage the tanks readily. Hence, the seismic behaviour and vibration of cylindrical liquid storage tanks, subjected to earthquakes, is of paramount importance, and it is investigated in this paper. The Finite Element Method is used to evaluate seismic response in addition to the reduction of excessive liquid sloshing in the tank when subjected to the long-period ground motion. The non-linear stress-strain behaviour pertaining to polymers and rubbers is implemented while non-linear contact elements are employed to describe the 3-D surface-to-surface contact. Therefore, Nonlinear Procedures are used to investigate the fluid-structure interactions (FSI) between liquid and the tank wall while there is incompressible liquid. Part I, examines the effect of the flexibility of the isolation system and the tank aspect ratio (height to radius) on the tank wall radial displacements of the tank wall and the liquid sloshing heights. Maximum stress and base shear force for various aspect ratios and different base-isolators, which are subjected to three seismic conditions, will be discussed in Part II. It is shown that the composite-base isolator is much more effective than other isolators due to its high flexibility and strength combined. Moreover, the base isolators may decrease the maximum level pertaining to radial displacement.

A Fundamental Study on Lower Duct Flow of passive anti-rolling tanks System (수동형 감요수조의 하부덕트 유동에 관한 기초연구)

  • Lee, Cheol-Jae;Lim, Jeong-Sun;Jung, Han-Sic;Jung, Hyo-Min
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.265-269
    • /
    • 2006
  • Anti-Roll Tanks, also called Sloshing Tanks, is a rather common and sometimes an efficient method of limiting the roll angles. The important parameters, when considering using anti-roll tanks, are positioning, size, duct area, flow control device etc. Measurement by the PIV(Particle Image Velocimetry) was conducted to investigate the flow characteristics around control damper and inlet area of duct for three kind of inclined angle $(\alpha=0^*,\;10^*\;and\;20^*)$. Flow behaviors such as instantaneous and time-mean velocity vectors are investigated. Furthermore, to reveal boundaries between flowing and stagnant zones and to extract velocity profiles at any selected sections of the lower duct for passive anti-rolling tanks system.

  • PDF

Response of base-isolated liquid storage tanks to near-fault motions

  • Jadhav, M.B.;Jangid, R.S.
    • Structural Engineering and Mechanics
    • /
    • v.23 no.6
    • /
    • pp.615-634
    • /
    • 2006
  • Seismic response of the liquid storage tanks isolated by the elastomeric bearings and sliding systems is investigated under near-fault earthquake motions. The fault normal and parallel components of near-fault motion are applied in two horizontal directions of the tank. The continuous liquid mass of the tank is modeled as lumped masses known as sloshing mass, impulsive mass and rigid mass. The corresponding stiffness associated with these lumped masses has been worked out depending upon the properties of the tank wall and liquid mass. It is observed that the resultant response of the isolated tank is mainly governed by fault normal component with minor contribution from the fault parallel component. Further, a parametric study is also carried out to study the effects of important system parameters on the effectiveness of seismic isolation for liquid storage tanks. The various important parameters considered are: aspect ratio of tank, the period of isolation and the damping of isolation bearings. There exists an optimum value of isolation damping for which the base shear in the tank attains the minimum value under near-fault motion. The increase of damping beyond the optimum value will reduce the bearing and sloshing displacements but increases the base shear. A comparative performance of five isolation systems for liquid storage tanks is also studied under normal component of near-fault motion and found that the EDF type isolation system may be a better choice for design of isolated tank in near-fault locations. Finally, it is also observed that the satisfactory response can be obtained by analysing the base-isolated tanks under simple cycloidal pulse instead of complete acceleration history.

An Analysis on the Temperature Changes and the Amount of Charging of Hydrogen in the Hydrogen Storage Tanks During High-Pressure Filling (고압 충전 시 수소 저장 탱크의 온도 변화 및 충전량에 관한 해석)

  • LI, JI-QIANG;LI, JI-CHAO;MYOUNG, NO-SEUK;PARK, KYOUNGWOO;JANG, SEON-JUN;KWON, JEONG-TAE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.3
    • /
    • pp.163-171
    • /
    • 2021
  • Securing energy sources is a key element essential to economic and industrial development in modern society, and research on renewable energy and hydrogen energy is now actively carried out. This research was conducted through experiments and analytical methods on the hydrogen filling process in the hydrogen storage tank of the hydrogen charging station. When low-temperature, high-pressure hydrogen was injected into a high-pressure tanks where hydrogen is charged, the theoretical method was used to analyze the changes in temperature and pressure inside the high-pressure tanks, the amount of hydrogen charge, and the charging time. The analysis was conducted in the initial vacuum state, called the First Cycle, and when the residual pressure was present inside the tanks, called the Second Cycle. As a result of the analysis, the highest temperature inside the tanks in the First Cycle of the high-pressure tank increased to 442.11 K, the temperature measured through the experiment was 441.77 K, the Second Cycle increased to 397.12 K, and the temperature measured through the experiment was 398 K. The results obtained through experimentation and analysis differ within ±1%. The results of this study will be useful for future hydrogen energy research and hydrogen charging station.

정지궤도위성 추진시스템 온도추이를 통한 위성폐기 가능시점 연구

  • Park, Eung-Sik;Han, Cho-Young
    • Aerospace Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.94-100
    • /
    • 2005
  • The geostationary satellite propulsion system has thermistors which can measure liquid propellant temperature at tanks, pipes and etc. In the satellite propulsion system with several tanks, the propellant in the tanks is moved by temperature change and this temperature pattern is constant. In this paper, the temperature change pattern of KOREASAT 1 propulsion system is compared and the prediction study of pressurant inflow using temperature change of geostationary satellite propulsion system is described.

  • PDF

Clustering Technique for Multivariate Data Analysis

  • Lee, Jin-Ki
    • Journal of the military operations research society of Korea
    • /
    • v.6 no.2
    • /
    • pp.89-127
    • /
    • 1980
  • The multivariate analysis techniques of cluster analysis are examined in this article. The theory and applications of the techniques and computer software concerning these techniques are discussed and sample jobs are included. A hierarchical cluster analysis algorithm, available in the IMSL software package, is applied to a set of data extracted from a group of subjects for the purpose of partitioning a collection of 26 attributes of a weapon system into six clusters of superattributes. A nonhierarchical clustering procedure were applied to a collection of data of tanks considering of twenty-four observations of ten attributes of tanks. The cluster analysis shows that the tanks cluster somewhat naturally by nationality. The principal componant analysis and the discriminant analysis show that tank weight is the single most important discriminator among nationality although they are not shown in this article because of the space restriction. This is a part of thesis for master's degree in operations research.

  • PDF

A Performance Study of Portable Hydrogen Storage Tank (휴대용 수소 저장체 성능 특성 연구)

  • Park, Joon-Ho;Hwang, Yong-Sheen;Jee, Sang-Hoon;Kim, Sung-Han;Cha, Suk-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.315-318
    • /
    • 2009
  • Hydrogen is the ideal candidate as an alternative energy carrier, so many hydrogen storage methods are investigated. The hydrogen storage method using metal hydride is good candidate as energy sources for portable devices because hydrogen-storage as metal hydride shows large volumetric storage density. In this study, we investigated the variations of hydrogen charging/discharging performance of metal hydride tanks at different temperature conditions. We charged metal hydride tanks with hydrogen in low temperature because of the exothermic reactions of hydrogen absorption while we discharged in high temperature to provide sufficient heat because of the endothermic reactions of desorption. In addition, we investigated the difference of hydrogen charging/discharging performance between two tanks having different sizes.

  • PDF

Spacecraft Spin Rate Change due to Propellant Redistribution Between Tanks

  • Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.1 no.1
    • /
    • pp.23-34
    • /
    • 1984
  • A bubble trapped in the liquid manifold of INTELSAT IV F-7 spacecraft caused a mass imbalance between the System 1 propellant tanks and a wobble half angle of 0.38 degree to 0.48 degree. A maneuver on May 14, 1980 passed the bubble through the axial jet and allowed propellant to redistribute. A 0.2 rpm change in sin rate was observed with an exponential decay time constant of 6 minutes. In this paper, moment of inertia, tank geometry and hydrodynamic models are derived to match the observed spin rate data. The values of the total mass of propellant considered were 16, 19 and 20 kgs with corresponding mass imbalances of 14.3, 15 and 15.1 Kgs, respectively. The result shows excellent agreement with observed spin rate data but it was necessary to assume a greater mass of hydrazine in the tanks than propellant accounting indicated.

  • PDF