• Title/Summary/Keyword: tank seismic design

Search Result 57, Processing Time 0.025 seconds

Evaluation of Seismic Design Force by Earthquake Response Analysis of Water Tanks Installed in RC Buildings (건축물에 설치된 물탱크의 지진응답해석을 통한 설계하중 평가)

  • Baek, Eun Rim;Oh, Ji Hyeon;Choi, Hyoung Suk;Lee, Sang Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.4
    • /
    • pp.221-229
    • /
    • 2019
  • Several water tanks installed in the building were damaged during the Gyeongju earthquake (2016) and the Pohang earthquake (2017). Since a water tank for fire protection is very important component, seismic safety should be ensured. In this study, an interaction between a water tank and a building was studied by the dynamic analysis of the RC building with the water tank. In case the water tank was installed on the roof of the RC building, it was confirmed that it did not significantly affect the response of the building. Based on the result, dynamic response characteristics of the water tank in the building were studied using two SDOF models represented dynamic behavior of the water tanks under earthquake. An earthquake time-history analysis was carried out with variables of aspect ratio of the tank, story of the building, and installed location in the building using three kinds of earthquakes.

Buckling conditions and strengthening by CFRP composite of cylindrical steel water tanks under seismic load

  • Ali Ihsan Celik;Mehmet Metin Kose;Ahmet Celal Apay
    • Earthquakes and Structures
    • /
    • v.27 no.2
    • /
    • pp.97-111
    • /
    • 2024
  • In this paper, buckling conditions and retrofitting of cylindrical steel water storage tanks with different roof types and wall thicknesses were investigated by using finite element method. Four roof types of cylindrical steel tanks which are open-top, flat-closed, conical-closed and torispherical-closed and three wall thicknesses of 4, 6 and 8 mm were considered in FE modeling of cylindrical steel tanks. The roof shapes significantly affect load distribution on the tank shell under the seismic action. Composite FRP materials are widely used for winding thin-walled cylindrical steel structures. The retrofitting efficiency of cylindrical steel water tank is tested under the seismic loading with the externally bonded CFRP laminates. In retrofitting of cylindrical steel tank, the CFRP composite material coating method was used to improve of seismic performance of cylindrical steel tanks. ANSYS software was used to analyze the cylindrical steel tanks and maximum equivalent (von-Mises) and directional deformation were obtained. Equivalent (von-Mises) stresses significantly decreased due to the coating of the tank shell with FRP composite material. In thin-walled steel structures, excessive stress causes buckling and deformations. Therefore, retrofitting led to decrease in stress, reductions in directional and buckling deformation of the open-top, flat-closed, conical-closed and torispherical-closed tanks.

Seismic behavior of liquid storage tanks with 2D and 3D base isolation systems

  • Kilic, Samet;Akbas, Bulent;Shen, Jay;Paolacci, Fabrizio
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.627-644
    • /
    • 2022
  • In past major earthquakes (1994 Northridge, 1995 Kobe, Chi-Chi 1999, Kocaeli 1999), significant damages occurred in the liquid storage tanks. The basic failure patterns were observed to be the buckling of the tank wall and uplift of the anchorage system. The damages in the industrial facilities and nuclear power plants have caused the spread of toxic substances to the environment and significant fires. Seismic isolation can be used in liquid storage tanks to decouple the structure and decrease the structural demand in the superstructure in case of ground shaking. Previous studies on the use of seismic isolation systems on liquid storage tanks show that an isolation system reduces the impulsive response but might slightly increase the convective one. There is still a lack of understanding of the seismic response of seismically isolated liquid storage tanks considering the fluid-structure interaction. In this study, one broad tank, one medium tank, and one slender tank are selected and designed. Two- and three-dimensional elastomeric bearings are used as seismic isolation systems. The seismic performance of the tanks is then investigated through nonlinear dynamic time-history analyses. The effectiveness of each seismic isolation system on tanks' performance was investigated. Isolator tension forces, modal analysis results, hydrodynamic stresses, strains, sloshing heights and base shear forces of the tanks are compared. The results show that the total base shear is lower in 3D-isolators compared to 2D-isolators. Even though the tank wall stresses, and strains are slightly higher in 3D-isolators, they are more efficient to prevent the tension problem.

Efficient Panel Shapes for Seismic Resistance of Stainless Steel Water Tank (스테인리스 물탱크 내진설계를 위한 효율적 패널 형상)

  • Kim, Sungwuk;Kim, Taeeun;Oh, Sungryoung;Ji-Hun Park
    • Journal of Urban Science
    • /
    • v.12 no.2
    • /
    • pp.19-30
    • /
    • 2023
  • The seismic design of water tanks for fire protection is important to prevent secondary earthquake damages due to fires. In this study, the seismic performance of stainless steel water tanks was evaluated considering both static and dynamic water pressure effects, and the influence of different panel shapes was investigated through numerical analysis. First, a basic water tank model comprised of flat panels was built, and then water pressure distribution including sloshing effects was evaluated. In the result of structural analysis, many panels of the basic water tank exceeded a specified allowable stress for load combinations including earthquake loads. In order to reduce the bending stress of the panel by increasing the moment of inertial of the panel section, alternative shapes of a truncated quadrangular pyramid were developed. Five water tanks with different alternative panel shapes were built and analyzed for the same load combinations. Based on the results of the numerical analysis, a number of effective aspect ratios were selected and modified to increase economic feasibility through additional analysis and structural safety check.

Seismic Design Force for Rectangular Water Tank with Flexible Walls (유연한 벽면을 가진 사각형 물탱크의 설계지진력 산정)

  • Kim, Min Woo;Yu, Eunjong;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.303-310
    • /
    • 2023
  • The equivalent static load for non-structural elements has a limitation in that the sloshing effect and the interaction between the fluid and the water tank cannot be considered. In this study, the equations to evaluate the impulse and convective components in the design codes and previous research were compared with the shaking table test results of a rectangular water tank with flexible wall panels. The conclusions of this study can be summarized as follows: (1) It was observed that the natural periods of the impulsive component according to ACI 350.3 were longer than system identification results. Thus, ACI 350.3 may underestimate the earthquake load in the case of water tanks with flexible walls. (2) In the case of water tanks with flexible walls, the side walls deform due to bending of the front and back walls. When such three-dimensional fluid-structure interaction was included, the natural period of the impulsive component became similar to the experimental results. (3) When a detailed finite element (FE) model of the water tank was unavailable, the assumption Sai = SDS could be used, resulting in a reasonably conservative design earthquake load.

Applicability of Beam Model among Earthquake Response Analysis Models of Liquid-Storage Tank (액체저장탱크의 지진응답해석 모델 중 빔 모델의 적용성)

  • Jin, Byeong-Moo;Jeon, Se-Jin;Kim, Young-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.696-699
    • /
    • 2004
  • Generally, the time history analysis among seismic response analyses of a structure needs more times than static analysis. Therefore the mechanical model of a structure has been used as a simple lumped parameter model in time history analysis. For the most cases, the simple mechanical model shows the similar results to that of detailed finite element model. so it is reasonable to use the simple mode] in preliminary analysis. In seismic design of liquid storage tank, such as LNG storage tank, the lumped parameter mode] also is being used in preliminary analysis, however sometimes shows the differences to the results of detailed finite element model. Therefore in this study, the dynamic characteristics between lumped parameter model and detailed finite model is compared for the variables such as height/diameter of liquid-storage tank and thickness of wall, then the applicability of beam mode] to the seismic response analysis are evaluated for some liquid storage tanks.

  • PDF

Study of Finite Element Analysis of Tuned Liquid Damper for Seismic Design of High-Rise Building (고층건물 내진설계용 TLD의 유한요소 해석에 관한 연구)

  • Park Seoung-Woo;Cho Jin-Rae;Lee Jae-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.597-602
    • /
    • 2006
  • Many researches have been studied several vibration control device such as TMD and TLD to reduce the influence of wind or seismic waves for high-rise buildings. TLD provides some advantages such as easy installation and low maintenance cost. However, because of the difficulties in evaluating the characteristics of TLD, the dynamic characteristics of TLD must be investigated by experiment or analysis. In this study, the dynamic response analysis of structure with TLD was carried out to verify the vibration control ability of the proposed TLD for high-rise building with about 60 stories. A real seismic wave was used, and the parameter of interest was chosen by the height of water level in the same shape of water tank. From the numerical results, the responses of structure with water tank were confirmed to be safer than those of structure without water tank.

  • PDF

Seismic Analysis of Nuclear Power Equipment Related to Design (원전기자재 설계와 관련된 내진해석)

  • Lee, Woo-Hyung;Cho, Jong-Rae;Roh, Min-Sik;Ryu, Jeong-Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.317-323
    • /
    • 2011
  • We use the finite element method to analyze the seismic design of a liquid storage tank for a polar crane at a nuclear power plant. We obtained the natural frequency and vibration modes by modal analysis, and we evaluated the seismic stability by response spectrum analysis. Furthermore, the seismic analysis of the tank was accomplished by analyzing not only the forces applied to the wall by the sloshing of the liquid, but also the safe-shutdown earthquake condition for the tank. We propose a seismic-design process and a seismic-analysis method for liquid storage tanks based on the commercial finite element analysis program, ANSYS.

Review of seismic studies of liquid storage tanks

  • Zhao, Ming;Zhou, Junwen
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.557-572
    • /
    • 2018
  • The academic research works about liquid storage tanks are reviewed for the purpose of providing valuable reference to the engineering practice on their aseismic design. A summary of the performance of tanks during past earthquakes is described in this paper. Next, the seismic response of tanks under unidirectional earthquake is reported, supplemented with the dynamic response under multidirectional motions. Then, researches on the influence of soil-structure interaction are brought out to help modify the seismic design approach of tanks in different areas with variable properties of soils. Afterwards, base isolation systems are reported to demonstrate their effectiveness for the earthquake-resistant design of liquid storage tanks. Further, researches about the liquid-structure interaction are reviewed with description of simplified models and numerical analytical methods, some of which consider the elastic effect of tank walls. Moreover, the liquid sloshing phenomenon on the hydrodynamic behaviors of tanks is presented by various algorithms including grid-based and meshfree method. And then the impact of baffles in changing the dynamic characteristics of the liquid-structure system is raised, which shows the energy dissipation by the vortex motion of liquid. In addition, uplifting effect is given to enhance the understanding on the capacity of unanchored tanks and some assessment of their development. At last, the concluding remarks and the aspects of extended research in the field of liquid storage tanks under seismic loads are provided, emphasizing the thermal stress analysis, the replaceable system for base isolation, the liquid-solid interaction and dynamic responses with stochastic excitations.

Seismic Soil-Structure Interaction Analyses of LNG Storage Tanks Depending on Foundation Type (기초 형식에 따른 LNG 저장탱크의 지반-구조물 상호작용을 고려한 지진응답 분석)

  • Son, Il-Min;Kim, Jae-Min;Lee, Changho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.3
    • /
    • pp.155-164
    • /
    • 2019
  • In this study, the soil-structure interaction(SSI) effect on the seismic response of LNG storage tanks was investigated according to the type of foundation. For this purpose, a typical of LNG storage tank with a diameter of 71m, which is constructed on a 30m thick clay layer over bedrock was selected, and nonlinearity of the soil was taken into account by the equivalent linearization method. Four different types of foundations including shallow foundation, piled raft foundation, and pile foundations(surface and floating types) were considered. In addition, the effect of soil compaction in group piles on seismic response of the tank was investigated. The KIESSI-3D, which is a SSI analysis package in the frequency domain, was used for the SSI analysis. Stresses in the outer tank, and base shear and overturning moment in the inner tank were calculated. From the comparisons, the following conclusions could be made: (1) Conventional fixed base seismic responses of outer tank and inner tank can be much larger than those of considering the SSI effect; (2) The influence of SSI on the dynamic response of the inner tank and the outer tank depends on the foundation types; and (3) Change in the seismic response of the structure by soil compaction in the piled raft foundation is about 10% and its effect is not negligible in the seismic design of the structure.