• Title/Summary/Keyword: tangential cutting

Search Result 32, Processing Time 0.022 seconds

Cutting force analysis in ball-end milling processes of STD11 (STD11의 볼엔드밀링 공정에서의 절삭력 해석)

  • 김남규
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.52-57
    • /
    • 2000
  • STD11 is one of difficult-to-cut materials and its cutting characteristic data is not built enough. A bad cutting condition of it leads to low productivity of die and mould, so it is necessary to evaluate the machining characteristics of STD11. In this paper, the relations of the geometry of ball-end mill and mechanics of machining with it are studied. The helix angle of ball-end mill varies according to a location of elemental cutting edge in the cutting process are difficult to calculate accurately. To calculate instantaneous cutting forces, it is supposed that the tangential, radial and axial cutting force coefficients are functions of elemental cutting edge location. Elemental cutting forces in the x,y and z direction are calculated by coordinate transformation. The total cutting forces are calculated by integrating the elemental cutting forces of engaged cutting edge elements. This model is verified by slot and side cutting experiments of STD11 workpiece which was heat-treated to HRC45.

  • PDF

Prediction of Specific Cutting Pressure in Face Milling Considering Tool Rake Angles (정면밀리에서 공구경사각을 고려한 비절삭저항 예측)

  • Ryu, S.H.;Chu, C.N.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.2
    • /
    • pp.169-177
    • /
    • 1997
  • In this study, investigated are the effects of tool rake angles and the change of cutting conditions on the specific cutting pressure in face milling. The cutting force in face milling is predicted from the double cutting edge model in3-dimensional cutting. Conventional specific cutting pressure model is modified by considering the variation of tool rake angles. Effectiveness of the modified cutting force model is verified by the experiments using special face milling cutters with different cutter pockets and various rake angles. From the comparison of the presented model and the specific cutting pressure, it is shown that the axial force can be predicted by the tangential force, radial force and geometric conditions. Also, the rela- tionship between specific cutting pressure and cutting conditions including feedrate, cutting velocity and depth of cut is studied.

  • PDF

Auto Path Generation and Active Compliance Force Control Using 3-axis Grinding Robot (3축 그라인딩 로봇을 이용한 자동 경로 생성 및 능동 컴플라이언스 힘 제어)

  • Choo, Jung-Hoon;Kim, Soo-Ho;Lee, Sang-Bum;Kim, Jung-Min
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1088-1094
    • /
    • 2006
  • In this paper, an auto path generation and an active compliance grinding control using 3-axis farce sensor are presented. These control algorithms enable the grinding robot to follow unknown path of various workpiece shape pattern. The robot is able to go grinding along unknown paths by position controller managing tangential direction angle and cutting speed, with only information about the start position and the end position. Magnitude and direction of normal force are calculated using force data that go through low pass filter. Moreover, normal and tangential directions are separated for force control and velocity control, respectively.

Cutting Characteristics Variation of Inconel 718 in End Millig with different Helix Angles -(II) Down End Milling (인코넬 718의 엔드밀링시 헬릭스각에 따른 절삭특성 변화 - (II) 하향엔드밀링)

  • 태원익;이선호;최원식;양승한;이영문
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.814-817
    • /
    • 2000
  • This paper has two purposes. One is to investigate the effect of the helix angle of endmilling cutter on the cutting haracteristics of inconel 718 in down endmilling. To this end a newly developed cutting force model in down end milling process is presented. Using this cutting force components of 4-tooth endmills with various helix angles have been predicted. Predicted values of cutting force components are well coincide with the measured ones. The other is to compare the down endmilling characteristics of lnconel 718 with those of the up milling previously presented. In up endmilling as the helix angle becomes larger the radial and tangential components of the specific cutting force ($K_1 and K_r$) decrease. While in down milling $K_1 and K_r$ become smaller as the helix angle decrease.

  • PDF

A combination method of the theory and experiment in determination of cutting force coefficients in ball-end mill processes

  • Kao, Yung-Chou;Nguyen, Nhu-Tung;Chen, Mau-Sheng;Huang, Shyh-Chour
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.4
    • /
    • pp.233-247
    • /
    • 2015
  • In this paper, the cutting force calculation of ball-end mill processing was modeled mathematically. All derivations of cutting forces were directly based on the tangential, radial, and axial cutting force components. In the developed mathematical model of cutting forces, the relationship of average cutting force and the feed per flute was characterized as a linear function. The cutting force coefficient model was formulated by a function of average cutting force and other parameters such as cutter geometry, cutting conditions, and so on. An experimental method was proposed based on the stable milling condition to estimate the cutting force coefficients for ball-end mill. This method could be applied for each pair of tool and workpiece. The developed cutting force model has been successfully verified experimentally with very promising results.

On-line Estimation of Radial Immersion Ratio in Face Milling Using Cutting Force (정면 밀링에서 절삭력을 이용한 반경 방향 절입비의 실시간 추정)

  • Hwang, Ji-Hong;O, Yeong-Tak;Gwon, Won-Tae;Ju, Jong-Nam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.178-185
    • /
    • 1999
  • In tool condition monitoring systems, parameters should be set to a certain threshold. In many cases, however, the threshold is dependent on cutting conditions, especially the radial immersion ratio. In this presented is a method of on-line estimation of the radial immersion ratio in face milling. When a tooth finishes sweeping, a sudden drop of cutting force occurs. The force drop is equal to the cutting force that acting on a tooth at the swept angle of cut and can be acquired from cutting force signals in feed and cross-feed directions. Average cutting force per tooth period can also be calculated from cutting force signals in two directions. The ratio to cutting forces in two directions acting on a tooth at a certain swept angle of cut and the ratio of average cutting forces in two directions per tooth period are functions of the swept angle of cut and the ratio of radial to tangential cutting forces. Using these parameters, the radial immersion ratio is estimated. Various experiments are performed to verify the proposed method. The results show that the radial immersion ratio can be estimated by this method regardless of other cutting conditions.

  • PDF

A Study on Cutting Force during Multi Wire Sawing of Silicon Wafers for Solar Cells (태양전지용 실리콘 웨이퍼의 멀티 와이어 쏘잉 시 절삭저항력에 관한 연구)

  • Hwang, In-Hwan;Park, Sang-Hyun;An, Kuk-Jin;Kwun, Geon-Dae;Lee, Chan-Jong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.3
    • /
    • pp.66-71
    • /
    • 2016
  • Reducing the wafer breakage rate and sawing thinner wafers will decrease the cost of solar cells. This study was carried out in order to identify ways to achieve this goal. In this study, the cutting force characteristics using an ingot tilting-type diamond multi wire-sawing machine were analyzed. The cutting force was analyzed while varying the tilting angles and wire speed. The obtained data were analyzed by classifying the tangential cutting force and the normal cutting force. In this cutting force experiment, the difference between the forces was confirmed; it was found that it rises with increasing the tilting angles and decreases when the wire speed elevates. The resulting value can be utilized as basic data for the determination of an ideal cutting recipe.

Effects of cutter runout on cutting forces during up-endmilling of Inconel718 (Inconel 718 상향 엔드밀링시 절삭력에 미치는 공구형상오차)

  • 이영문;양승한;장승일;백승기;김선일
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.302-307
    • /
    • 2002
  • In end milling process, the undeformed chip section area and cutting forces vary periodically with phase change of the tool. However, the real undeformed chip section area deviates from the geometrically ideal one owing to cutter runout and tool shape error. In this study, a method of estimating the real undeformed chip section area which reflects cutter runout and tool shape error was presented during up-end milling of Inconel 718 using measured cutting forces. The specific cutting resistance, K. and $K_t$ are defined as the radial and tangential cutting forces divided by the modified chip section area. Both of $K_r$, and $K_t$ values become smaller as the helix angle increases from $30^\circ$ to $40^\circ$ Whereas they become larder as the helix angle increases from $40^\circ$ to $50^\circ$. On the other hand, the $K_r$, and $K_t$ values show a tendency to decrease with increase of the modified chip section area and this tendency becomes distinct with smaller helix angle.

  • PDF

Effects of cutter runout on cutting forces during down-endmilling of Inconel718 (Inconel 718 하향 엔드밀링시 절삭력에 미치는 공구형상오차)

  • 이영문;양승한;장승일;백승기;이동식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.308-313
    • /
    • 2002
  • In end milling process, the undeformed chip section area and cutting forces vary periodically with phase change of the tool. However, the real undeformed chip section area deviates from the geometrically ideal one owing to cutter runout and tool shape error. In this study, a method of estimating the real undeformed chip section area which reflects cutter runout and tool shape error was presented during down end-milling of Inconel 715 using measure cutting forces. Contrary to the up-end milling the value of radial specific cutting resistance, $K_r$, becomes larger as the helix angle increases from $30^{\circ}$ to $40^{\circ}$ and it shows almost same value at $50^{\circ}$ The value of tangential specific cutting resistance, $K_t$ becomes larger as the helix angle increases same as in up-end milling, the $KK_r$, and $K_t$ values show a tendency to decrease with increase of the modified chip section area and this tendency is distinct with helix angle $40^{\circ}$.

  • PDF

A Study on the Productivity Improvement of Inconel 718 Material Using Cutting Force Control Program (절삭력 제어 프로그램을 이용한 Inconel718 소재의 생산성 향상에 관한 연구)

  • Lee, Seung-Heon;Son, Hwang-Jin;Cho, Young-Tae;Jung, Yoon-Gyo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.41-46
    • /
    • 2017
  • Productivity improvement and cost reduction in the aircraft industry have become major industrial objectives, and improving productivity by reducing machining time has become a key focus. When numerical cutting code is created by CAM software, such as CATIA or UG-NX, it is impossible to control machining feed speed using cutting force changes depending on the machining tool path. However, machining an aircraft engine part from difficult material, such as Inconel 718, takes a long time, and tool chipping or breakage often occurs from forcing the machining path too quickly. This study investigated and verified the reliability of the AdvantEdge production module (PM)using cutting power tests. In particular, diffuser and diffuser case parts were considered, comparing cutting power and machining time using AdvantEdge PM and CATIA.