• Title/Summary/Keyword: tandem mass spectrometry coupled with liquid chromatography

Search Result 64, Processing Time 0.024 seconds

Putative multiple reaction monitoring strategy for the comparative pharmacokinetics of postoral administration Renshen-Yuanzhi compatibility through liquid chromatography-tandem mass spectrometry

  • Sun, Yufei;Feng, Guifang;Zheng, Yan;Liu, Shu;Zhang, Yan;Pi, Zifeng;Song, Fengrui;Liu, Zhiqiang
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.105-114
    • /
    • 2020
  • Background: Exploring the pharmacokinetic (PK) changes of various active components of single herbs and their combinations is necessary to elucidate the compatibility mechanism. However, the lack of chemical standards and low concentrations of multiple active ingredients in the biological matrix restrict PK studies. Methods: A putative multiple reaction monitoring strategy based on liquid chromatography coupled with mass spectrometry (LC-MS) was developed to extend the PK scopes of quantification without resorting to the use of chemical standards. First, the compounds studied, including components with available reference standard (ARS) and components lacking reference standard (LRS), were preclassified to several groups according to their chemical structures. Herb decoctions were then subjected to ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry analysis with appropriate collision energy (CE) in MS2 mode. Finally, multiple reaction monitoring transitions transformed from MS2 of ultrahigh-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry were used for ultrahigh-performance liquid chromatography coupled with triple quadrupole mass spectrometry to obtain the mass responses of LRS components. LRS components quantification was further performed by developing an assistive group-dependent semiquantitative method. Results: The developed method was exemplified by the comparative PK process of single herbs Radix Ginseng (RG), Radix Polygala (RP), and their combinations (RG-RP). Significant changes in PK parameters were observed before and after combination. Conclusion: Results indicated that Traditional Chinese Medicine combinations can produce synergistic effects and diminish possible toxic effects, thereby reflecting the advantages of compatibility. The proposed strategy can solve the quantitative problem of LRS and extend the scopes of PK studies.

Simultaneous Determination of Statins in Human Urine by Dilute-and-Shoot-Liquid Chromatography-Mass Spectrometry

  • Jang, Haejong;Mai, Xuan-Lan;Lee, Gunhee;Ahn, Jae Hyoung;Rhee, Jongsook;Truong, Quoc-Ky;Vinh, Dinh;Hong, Jongki;Kim, Kyeong Ho
    • Mass Spectrometry Letters
    • /
    • v.9 no.4
    • /
    • pp.95-99
    • /
    • 2018
  • An innovative, simple, and rapid assay method based on liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was developed and validated for the simultaneous determination of eight statin drugs in human urine. A simple sample clean-up procedure using the "dilute and shoot" (DAS) approach enabled a fast and reliable analysis. The influence of the dilution factor was investigated to ensure detectability and reduce the matrix effect. Chromatographic separation was performed on a Phenomenex Kinetex C18 column ($50{\times}3.0mm$ i.d., $2.6{\mu}m$) using an elution gradient of mobile phase A composed of 0.1% acetic acid, and mobile phase B composed of acetonitrile, at a flow rate of 0.35 mL/min. Quantitation was performed on a triple quadrupole mass spectrometer operated in multiple reaction monitoring (MRM) mode using electrospray ionization in positive ion mode. The total chromatographic run time was 15 min. The method was validated for selectivity, sensitivity, recovery, linearity, accuracy, precision, and stability. The present method was successfully applied to the analysis of Rosuvastatin in urine samples after oral administration to healthy human subjects.

Tentative identification of 20(S)-protopanaxadiol metabolites in human plasma and urine using ultra-performance liquid chromatography coupled with triple quadrupole time-of-flight mass spectrometry

  • Ling, Jin;Yu, Yingjia;Long, Jiakun;Li, Yan;Jiang, Jiebing;Wang, Liping;Xu, Changjiang;Duan, Gengli
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.539-549
    • /
    • 2019
  • Background: 20(S)-Protopanaxadiol (PPD), the aglycone part of 20(S)-protopanaxadiol ginsenosides, possesses antidepressant activity among many other pharmacological activities. It is currently undergoing clinical trial in China as an antidepressant. Methods: In this study, an ultra-performance liquid chromatography coupled with triple quadrupole time-of-flight mass tandem mass spectrometry method was established to identify the metabolites of PPD in human plasma and urine following oral administration in phase IIa clinical trial. Results: A total of 40 metabolites in human plasma and urine were identified using this method. Four metabolites identified were isolated from rat feces, and two of them were analyzed by NMR to elucidate the exact structures. The structures of isolated compounds were confirmed as (20S,24S)-epoxydammarane-12,23,25-triol-3-one and (20S,24S)-epoxydammarane-3,12,23,25-tetrol. Both compounds were found as metabolites in human for the first time. Upon comparing our findings with the findings of the in vitro study of PPD metabolism in human liver microsomes and human hepatocytes, metabolites with m/z 475.3783 and phase II metabolites were not found in our study whereas metabolites with m/z 505.3530, 523.3641, and 525.3788 were exclusively detected in our experiments. Conclusion: The metabolites identified using ultra-performance liquid chromatography coupled with triple quadrupole time-of-flight mass spectrometry in our study were mostly hydroxylated metabolites. This indicated that PPD was metabolized in human body mainly through phase I hepatic metabolism. The main metabolites are in 20,24-oxide form with multiple hydroxylation sites. Finally, the metabolic pathways of PPD in vivo (human) were proposed based on structural analysis.

Determination of Corticosteroids in Moisturizers by LC-MS/MS

  • Park, Sumin;Choi, Gye Young;Lee, Seon-Ah;Kim, Hyun Jeong;Yum, Hye Yung;Paeng, Ki-Jung
    • Mass Spectrometry Letters
    • /
    • v.7 no.1
    • /
    • pp.26-29
    • /
    • 2016
  • Simultaneous determination of three corticosteroids (clobetasol propionate, betamethasone dipropionate, fluticasone propionate) in moisturizers was performed by using liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS). Sample preparation was conducted by the liquid-liquid extraction (LLE). Moisturizers include emulsifying agent and it forms micelles. In order to improve the extraction efficiency of corticosteroids trapped in micelle, newly developed-optimized extraction conditions which can remove the matrix effect from moisturizers was applied with various pH conditions in LLE extraction stage of sample preparation. Thus, the addition of 10 μL of 1 M HCl into moisturizers sample before extraction could improve the extraction efficiency. For the quantitative analysis, SRM table that contained specific transition of all of target corticosteroids was created. The developed method was validated for linearity, accuracy, precision, limit of detection (LOD), limit of quantization (LOQ) and recovery. Over the 0.99 r2 value was obtained in calibration standard range. Effective accuracy and precision were also obtained. LODs were below 31 ng/mL and LOQs were estimated below 94 ng/mL for all corticosteroids tested.

Quantitative Analysis of Twelve Marker Compounds in Palmijihwang-hwan using Ultra-Performance Liquid Chromatography Coupled with Electrospray Ionization Tandem Mass Spectrometry

  • Seo, Chang-Seob;Shin, Hyeun-Kyoo
    • Natural Product Sciences
    • /
    • v.20 no.3
    • /
    • pp.182-190
    • /
    • 2014
  • An ultra-performance liquid chromatography (UPLC) coupled with electrospray ionization (ESI) tandem mass spectrometry (MS) method was established for quantitative analysis of twelve components, allantoin (1), morroniside (2), 5-hydroxymethyl-2-furfural (5-HMF) (3), loganin (4), coumarin (5), cinnamic acid (6), mesaconitine (7), cinnamaldehyde (8), hypaconitine (9), aconitine (10), alisol B (11), and alisol B acetate (12) in a Palmijihwang-hwan decoction. The twelve constituents were separated on a UPLC BEH C18 column ($2.1{\times}100mm$, $1.7{\mu}m$) at a column temperature of $40^{\circ}C$ by gradient elution with 0.1% (v/v) formic acid in water and acetonitrile as the mobile phase. The flow rate was 0.3 mL/min and the injection volume was $2.0{\mu}L$. Calibration curves of all compounds were acquired with values of the correlation coefficient ${\geq}0.99$ within the test ranges. The limits of detection and quantification for all analytes were 0.01 - 4.53 ng/mL and 0.03 - 13.60 ng/mL, respectively. The concentrations of the compounds 1 - 9 and 12 were 72.83, 4389.00, 4859.00, 3155.17, 223.67, 33.50, 1.97, 518.00, 2.25, and $25.00{\mu}g/g$, respectively. However, compounds 10 and 11 were not detected.

Pentafluorophenylprophyl Ligand-based Liquid Chromatography-Tandem Mass Spectrometric Method for Rapid and Reproducible Determination of Metformin in Human Plasma

  • Yang, Jeong Soo;Oh, Hyeon Ju;Jung, Jin Ah;Kim, Jung-Ryul;Kim, Tae-Eun;Ko, Jae-Wook;Lee, Soo-Youn;Huh, Wooseong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3284-3288
    • /
    • 2013
  • This paper describes first development and validation of pentafluorophenylprophyl ligand-based liquid chromatography coupled to tandem mass spectrometry (PFPLC-MS/MS) method to determine metformin, a highly polar compound, in human plasma. Metformin and Phenformin (internal standard) were extracted from human plasma 50 ${\mu}L$ with a single-step protein precipitation. The chromatographic separation was performed using a linear gradient elution of mobile phase involving 5.0 mM ammonium formate solution with 0.1% formic acid (A) and acetonitrile (B) over 3.0 min of run time on a Phenomenex Luna PFP column. The detection was performed using a triple-quadrupole tandem mass spectrometer (Waters Quattro micro) with electrospray ionization in the mode of positive ionization and multiple-reaction monitoring (MRM). The developed method was validated with 5.0 ng/mL of lower limit of quantification (LLOQ). The calibration curve was linear over 5-3000 ng/mL of the concentration range ($R^2$ > 0.99). The specificity, selectivity, carry-over effect, precision, accuracy and stability of the method met the acceptance criteria. The method developed in this study had had rapidness, simplicity and ruggedness. The reliable method was successfully applied to high throughput analysis of real samples for a practical purpose of a pharmacokinetic study.

Determination of Polar Secondary Metabolomes in Arabidopsis thaliana using High Performance Liquid Chromatography Coupled with Tandem Mass Spectrometry

  • Cho, Young-Ah;Park, Se-min;Bae, Dong-Won;Seo, On-Nuri;Lee, Ji-Eun;Jeong, Sung-Woo;Kwon, Young-Sang;Cha, Jae-Yul;Bae, Han-Hong;Shin, Sung-Chul
    • Journal of agriculture & life science
    • /
    • v.46 no.6
    • /
    • pp.165-171
    • /
    • 2012
  • As a preceding study for investigating the influence of sound wave stimulus on Arabidopsis thaliana metabolomics, the polar secondary metabolomes of the plant were determined using high performance liquid chromatography coupled with tandem mass spectrometry. A total of 10 polar secondary metabolomes were characterized and quantified. Among them, 4 metabolomes, p-coumaroylagmatine isomer (7 and 8), p-coumaroylagmatine isomer (9 and 10) were identified in the plant for the first time. The validation was conducted in terms of linearity, recovery, precision, limit of detection (LOD) and limit of quantification (LOQ). The validated method was applied to the simultaneous quantification of the 10 polar secondary metabolomes.

Bioequivalence Assessment of Acephyll® Capsule to Surfolase® Capsule (Acebrophylline HCl 100 mg) by Liquid Chromatography Tandem Mass Spectrometry

  • Nam, Kyung-Don;Seo, Ji-Hyung;Yim, Sung-Vin;Lee, Kyung-Tae
    • Journal of Pharmaceutical Investigation
    • /
    • v.41 no.5
    • /
    • pp.309-315
    • /
    • 2011
  • A sensitive and specific liquid chromatographic method coupled with tandem mass spectrometry (LC-MS/MS) was developed for the analysis of ambroxol (active moiety of acebrophylline). After acetonitrile precipitation of proteins from plasma samples, ambroxol and the domperidone (internal standard, IS) were eluted on a C18 column. The isocratic mobile phase was consisted of 10 mM ammonium acetate and methanol (10 : 90, v/v), with flow rate at 0.2 mL/min. A tandem mass spectrometer, as detector, was used for quantitative analysis in positive mode by a multiple reaction monitoring mode to monitor the m/z 379.2${\rightarrow}$264.0 and the m/z 426.2${\rightarrow}$175.1 transitions for ambroxol and the IS, respectively. Twenty four healthy Korean male subjects received two capsules (100 mg ${\times}$ 2) of either the test or the reference formulation of acebrophylline HCl in a 2 ${\times}$ 2 crossover study, this was followed by a 1week washout period between either formulation. $AUC_{0-t}$ (the area under the plasma concentration-time curve) was calculated by the linear trapezoidal rule. $C_{max}$ (maximum plasma drug concentration) and $T_{max}$ (time to reach $C_{max}$) were compiled from the plasma concentration-time data. The 90% confidence intervals for the log transformed data were acceptable range of log 0.8 to log 1.25 (e.g., log 0.8964 - log 0.9910 for $AUC_{0-t}$ log 0.8690 - log 1.0750 for $C_{max}$). The major parameters, $AUC_{0-t}$ and $C_{max}$ met the criteria of Korea Food and Drug Administration for bioequivalence indicating that Acephyll$^{(R)}$ capsule (test) is bioequivalent to Surfolase$^{(R)}$ capsule (reference).

Simple and Robust Measurement of Blood Plasma Lysophospholipids Using Liquid Chromatography Mass Spectrometry

  • Ji, Dong Yoon;Lee, Chang-Wan;Park, Se Hee;Lee, Eun Jig;Lee, Do Yup
    • Mass Spectrometry Letters
    • /
    • v.8 no.4
    • /
    • pp.109-113
    • /
    • 2017
  • Single analytical procedure including extraction, liquid chromatography, and mass spectrometric analysis was evaluated for the simultaneous measurement of lysophospholipids (LPLs). LPLs, particularly, lysophosphatidic acids (LPA) and sphingosine 1-phosphate (S1P) are lipid messengers ubiquitously found in various biological matrix. The molecular species mediate important physiological roles in association with many diseases (e.g. cancer, inflammation, and neurodegenerative disease), which emphasize the significance of the simple and reliable analytical method for biomarker discovery and molecular mechanistic understanding. Thus, we developed analytical method mainly focusing on, but not limited by those lipid species S1P and LPA using reverse phase liquid chromatography-tandem mass spectrometry (RPLC-ESI-MS-MS). Extraction method was modified based on Folch method with optimally minimal level of ionization additive (ammonium formate 10 mM and formic acid). Reverse-phase liquid-chromatography was applied for chromatographical separation in combination with negative ionization mode electrospray-coupled Orbitrap mass spectrometry. The method validation was performed on human blood plasma in a non-targeted lipid profiling manner with full-scan MS mode and data-dependent MS/MS. The proposed method presented good inter-assay precision for primary targets, S1P and LPA. Subsequent analysis of other types of LPLs identified a broad range of lysophosphatidylcholines (LPCs) and lysophosphatidyl-ethanolamines (LPEs).

Comparison of Anthocyanin Content in Seed Coats of Black Soybean [Glycine max(L.) Merr.] Cultivars Using Liquid Chromatography Coupled to Tandem Mass Spectrometry

  • Shin, Sung-Chul;Lee, Soo-Jung;Lee, Sung-Joong;Chung, Jong-Il;Bae, Dong-Won;Kim, Soo-Taek;Sung, Nak-Ju
    • Food Science and Biotechnology
    • /
    • v.18 no.6
    • /
    • pp.1470-1475
    • /
    • 2009
  • The seed coat of the black soybean contains 3 main anthocyanins such as delphinidin-3-O-$\beta$-glucoside, cyanidin-3-O-$\beta$-glucoside, and petunidin-3-O-$\beta$-glucoside. As a part of our effort on discovering and breeding new black soybean cultivars which possesses specific anthocyanin component rich, we determined the anthocyanin profiles of the 2 cultivars recently developed soybean cv. Gaechuck #1 and cv. Gyeongsang #1, using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and compared their content and identity with those of previously known 10 cultivar controls. The Cosmosil-$5C_{18}$-AR-II column were selected for the analysis because of the best peak separation. The column temperature was set up at $35^{\circ}C$. The mobile phase consisting of water containing 0.5%(v/v) formic acid and methanol gave good separation between the 3 anthocyanin analytes and internal standard (quercetin 3-O-$\beta$-rutinoside) and peaks with suppressed tail. The MS/MS spectra of each individual anthocyanin standard were detected in positive electron spray ionization (ESI) modes. It was disclosed that the anthocyanin contents of the soybean cv. Gaechuck#1 and cv. Gyeongsang#1 are roughly higher than those of the 10 controls.