• Title/Summary/Keyword: tall twin buildings

Search Result 11, Processing Time 0.017 seconds

Wind-induced response of structurally coupled twin tall buildings

  • Lim, Juntack;Bienkiewicz, Bogusz
    • Wind and Structures
    • /
    • v.10 no.4
    • /
    • pp.383-398
    • /
    • 2007
  • The paper describes a study of the effects of structural coupling on the wind-induced response of twin tall buildings connected by a skybridge. Development of a dual high-frequency force balance used in wind tunnel investigation and background information on the methodology employed in analysis are presented. Comparisons of the wind-induced building response (rooftop acceleration) of structurally coupled and uncoupled twin buildings are provided and the influence of structural coupling is assessed. It is found that the adverse aerodynamic interference effects caused by close proximity of the buildings can be significantly reduced by the coupling. Neglecting of such interactions may lead to excessively conservative estimates of the wind-induced response of the buildings. The presented findings suggest that structural coupling should be included in wind-resistant design of twin tall buildings.

Wind tunnel investigation of correlation and coherence of wind loading on generic tall twin buildings in close proximity

  • Lim, Juntack;Bienkiewicz, Bogusz
    • Wind and Structures
    • /
    • v.18 no.4
    • /
    • pp.443-456
    • /
    • 2014
  • A popular modern architectural form for tall buildings is two (or more) towers which are structurally linked through such features as a shared podium or sky-bridges. The fundamental features of the wind loading and the structural links of such buildings can be studied by measuring load components on the individual unlinked towers along with their correlations. This paper describes application of dual high frequency force balance (DHFFB) in a wind tunnel study of the base wind loading exerted on generic tall twin buildings in close proximity. Light models of two identical generic tall buildings of square plan were mounted on DHFFB and the base wind loading exerted on the buildings was simultaneously acquired. The effects of the relative positions of the buildings on the correlations and coherences involving loading components on each building and on the two buildings were investigated. For some relative positions, the effects of the building proximity on the wind loading were significant and the loading was markedly different from that exerted on single buildings. In addition, the correlations between the loadings on the two buildings were high. These effects have potential to significantly impact, for example, the modally-coupled resonant responses of the buildings to the aerodynamic excitations. The presented results were not meant to be recommended for direct application in wind resistant design of tall twin buildings. They were intended to show that wind loading on tall buildings in close proximity is significantly different from that on single buildings and that it can be conveniently mapped using DHFFB.

Experimental study of wind-induced pressures on tall buildings of different shapes

  • Nagar, Suresh K;Raj, Ritu;Dev, Nirendra
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.431-443
    • /
    • 2020
  • The modern tall buildings are often constructed as an unconventional plan and as twin buildings. Wind load on the tall building is significantly influenced by the presence of another building in the near vicinity. So, it is imperative to study wind forces on an unconventional plan shaped tall building. Mean wind pressure coefficients of a square and 'H' plan shape tall buildings are investigated using wind tunnel experiments. The experiments were carried out for various wind directions from 00 to 900 at an interval of 300 and various locations of the identical interfering building. The experimental results are presented at the windward face from the viewpoint of effects on cladding design. To quantify the interference effects, interference factors (I.F) are calculated. Mean pressure coefficients of both models are compared for isolated and interference conditions. The results show that pressure reduces with an increase in wind angle till 600 wind direction. The interfering building at full blockage interference condition generates more suction than the other two conditions. The interference factor for both models is less than unity. H-plan building model is subjected to a higher pressure than the square model.

Impact of the Aerodynamic Characteristics of Twin Buildings on Wind Responses (트윈 빌딩의 공력 특성이 풍응답에 미치는 영향 평가)

  • Kim, Bub-Ryur
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • The wind responses of twin buildings are determined by the characteristics of wind loads and the dynamic characteristics of the structural systems of the buildings. In this study, the characteristics of wind pressure that influence wind responses were identified for two different spacings between the twin buildings using a wind tunnel test and the proper orthogonal decomposition (POD) method. Structural dynamic characteristics were also identified using 3D structural system modeling. The double modal transformation method was utilized to evaluate the characteristics of wind pressure for across-wind and along-wind conditions and the effect of the dynamic characteristics of each structure on the wind responses. The channeling and vortex effects were identified through the POD method. Across-wind loads were significantly affected by the spacings between the twin buildings, whereas along-wind loads were minimally affected. Similarly, while using the double modal transformation method, a significant difference was noticed in case of the cross-participation coefficients in the across-wind direction condition for the different spacings between the buildings; however, the along-wind direction condition showed negligible difference. Therefore, the spacing between the two buildings plays a more important role in across-wind responses compared to along-wind responses.

Across-wind excitation mechanism for interference of twin tall buildings in tandem arrangement

  • Zu, G.B.;Lam, K.M.
    • Wind and Structures
    • /
    • v.26 no.6
    • /
    • pp.397-413
    • /
    • 2018
  • Excitation mechanism of interference effect between two tall buildings is investigated with wind tunnel experiments. Synchronized building surface pressure and flow field measurements by particle image velocimetry (PIV) are conducted to explore the relationship between the disturbed wind flow field and the consequent wind load modification for twin buildings in tandem. This reveals evident excitation mechanisms for the fluctuating across-wind loads on the buildings. For small distance (X/D < 3) between two buildings, the disturbed flow pattern of impaired vortex shedding is observed and the fluctuating across-wind load on the downstream building decreases. For larger distance ($X/D{\geq}3$), strong correlation between the across-wind load of the downstream building and the oscillation of the wake of the upstream building is found. By further analysis with conditional sampling and phase-averaged techniques, the coherent flow structures in the building gap are clearly observed and the wake oscillation of the upstream building is confirmed to be the reason of the magnified across-wind force on the downstream building. For efficient PIV measurement, the experiments use a square-section high-rise building model with geometry scale smaller than the usual value. Interference factors for all three components of wind loads on the building models being surrounded by another identical building with various configurations are measured and compared with those from previous studies made at large geometry scale. The results support that for interference effect between buildings with sharp corners, the length scale effect plays a minor role provided that the minimum Reynolds number requirement is met.

Evaluating Wind Load and Wind-induced Response of a Twin Building using Proper Orthogonal Decomposition (트윈 빌딩의 적합 직교 분해 기법을 이용한 풍하중 및 풍응답 평가)

  • Kim, Bub-Ryur
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.6
    • /
    • pp.309-314
    • /
    • 2018
  • The wind load and structural characteristics of a twin building are more complex than those of conventional high-rise buildings. The pressure load due to wind on a twin building was therefore measured via wind tunnel experiments to analyze such characteristics. The wind pressure pattern was then deduced from measured data using proper orthogonal decomposition. Channeling and vortex shedding were observed in the first and second modes, respectively. The along-wind loads on the two buildings featured a positive correlation and the cross-wind loads featured no correlation. Such a correlation affected the wind-induced displacement. The structural member connecting the two buildings had an insignificant effect on the positive correlation, but it notably reduced the wind-induced displacement with a negative correlation.

MOVEMENT CONTROL OF HIGH-RISE BUILDINGS DURING CONSTRUCTION

  • Taehun Ha;Sungho Lee;Bohwan Oh
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.46-51
    • /
    • 2011
  • High-rise buildings are widely being constructed in the Middle-East, South-East, and East Asia. These buildings are usually willing to stand for the landmark of the region and, therefore, exhibit some extraordinary features such as super-tall height, elevation set-backs, overhangs, or free-form exterior surface, all of which makes the construction difficult, complex, and even unsafe at some construction stages. In addition to the elaborately planned construction sequence, prediction and monitoring of building's movement during construction and after completion are required for precise and safe construction. This is often called the Building Movement Control during construction. This study describes Building Movement Control of the KLCC Tower, a 58-story office building currently being built right next to the famous PETRONAS Twin Towers. The main items of the Building Movement Control for the KLCC Tower are axial shortening and verticality. Preliminary prediction of these items are already carried out by the structural design team but more accurate prediction based on construction stage analysis and combined with time-dependent material testing, field monitoring, and site survey is done by the main contractor. As of September 2010, the Tower is under construction at level 30, where the plan abruptly changes from rectangle to triangle. Findings and troubleshooting until the current construction stage are explained in detail and implementations are suggested for future applications.

  • PDF

Numerical investigation of wind interference effect on twin C-shaped tall buildings

  • Himanshoo Verma;R. S. Sonparote
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.425-444
    • /
    • 2023
  • This study is to investigate the effect of interference between two C-shaped high-rise buildings by computational fluid dynamics (CFD), focusing on the variation of the local pressure coefficient (CP) and the mean pressure coefficient (CPMEAN). Sixteen building position cases are considered for the present study. These cases were based on the position and height of the interference building (IB). The pressure coefficient (CP) is calculated on the principal building (PB) and is compared with an isolated building identical in shape and size. The interference effect on PB has also been presented in reference for the interference factor (IF). According to the findings, the maximum force coefficient on the PB is 0.971 and it is 10.97% more than the isolated PB when IB is located at position 2b (two times the width of the building), and the interfering height of 13H/15 mm. The moment coefficient on PB is 1.27, which is 27.36% less than the isolated case in which IB pushed 2b to 3b in the y direction with 750 mm height. In most of the cases, because of the shielding effect of the IB, the value of force coefficient (CF) on PB has been reduced. On the face of the PB, there are also considerable differences in the mean pressure coefficient CPMEAN. When IB was positioned at a location of 2b in Y direction and an interfering height of 13H/15 mm, the maximum CPMEAN (1.58) was observed on the leeward face of PB.

A Study on the Implement of AI-based Integrated Smart Fire Safety (ISFS) System in Public Facility

  • Myung Sik Lee;Pill Sun Seo
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.3
    • /
    • pp.225-234
    • /
    • 2023
  • Even at this point in the era of digital transformation, we are still facing many problems in the safety sector that cannot prevent the occurrence or spread of human casualties. When you are in an unexpected emergency, it is often difficult to respond only with human physical ability. Human casualties continue to occur at construction sites, manufacturing plants, and multi-use facilities used by many people in everyday life. If you encounter a situation where normal judgment is impossible in the event of an emergency at a life site where there are still many safety blind spots, it is difficult to cope with the existing manual guidance method. New variable guidance technology, which combines artificial intelligence and digital twin, can make it possible to prevent casualties by processing large amounts of data needed to derive appropriate countermeasures in real time beyond identifying what safety accidents occurred in unexpected crisis situations. When a simple control method that divides and monitors several CCTVs is digitally converted and combined with artificial intelligence and 3D digital twin control technology, intelligence augmentation (IA) effect can be achieved that strengthens the safety decision-making ability required in real time. With the enforcement of the Serious Disaster Enterprise Punishment Act, the importance of distributing a smart location guidance system that urgently solves the decision-making delay that occurs in safety accidents at various industrial sites and strengthens the real-time decision-making ability of field workers and managers is highlighted. The smart location guidance system that combines artificial intelligence and digital twin consists of AIoT HW equipment, wireless communication NW equipment, and intelligent SW platform. The intelligent SW platform consists of Builder that supports digital twin modeling, Watch that meets real-time control based on synchronization between real objects and digital twin models, and Simulator that supports the development and verification of various safety management scenarios using intelligent agents. The smart location guidance system provides on-site monitoring using IoT equipment, CCTV-linked intelligent image analysis, intelligent operating procedures that support workflow modeling to immediately reflect the needs of the site, situational location guidance, and digital twin virtual fencing access control technology. This paper examines the limitations of traditional fixed passive guidance methods, analyzes global technology development trends to overcome them, identifies the digital transformation properties required to switch to intelligent variable smart location guidance methods, explains the characteristics and components of AI-based public facility smart fire safety integrated system (ISFS).