• Title/Summary/Keyword: taguchi analysis

Search Result 471, Processing Time 0.027 seconds

Statistical Analysis of Cutting Force for End Milling with Different Cutting Tool Materials (공구재종에 따른 엔드밀 가공의 절삭력에 관한 통계적해석)

  • Choi, Man Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.86-91
    • /
    • 2016
  • End milling is an important and common machining operation because of its versatility and capability to produce various profiles and curved surfaces. This paper presents an experimental study of the cutting force variations in the end milling of SM25C with HSS(high speed steel) and carbide tool. This paper involves a study of the Taguchi design application to optimize cutting force in a end milling operation. The Taguchi design is an efficient and effective experimental method in which a response variable can be optimized, given various control and noise factors, using fewer resources than a factorial design. This study included feed rate, spindle speed and depth of cut as control factors, and the noise factors were different cutting tool in the same specification. An orthogonal array of $L_9(3^3)$ of ANOVA analyses were carried out to identify the significant factors affecting cutting force, and the optimal cutting combination was determined by seeking the best cutting force and signal-to-noise ratio. Finally, confirmation tests verified that the Taguchi design was successful in optimizing end milling parameters for cutting force.

Robust design on the arrangement of a sail and control planes for improvement of underwater Vehicle's maneuverability

  • Wu, Sheng-Ju;Lin, Chun-Cheng;Liu, Tsung-Lung;Su, I-Hsuan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.617-635
    • /
    • 2020
  • The purpose of this study is to discuss how to improve the maneuverability of lifting and diving for underwater vehicle's vertical motion. Therefore, to solve these problems, applied the 3-D numerical simulation, Taguchi's Design of Experiment (DOE), and intelligent parameter design methods, etc. We planned four steps as follows: firstly, we applied the 2-D flow simulation with NACA series, and then through the Taguchi's dynamic method to analyze the sensitivity (β). Secondly, take the data of pitching torque and total resistance from the Taguchi orthogonal array (L9), the ignal-to-noise ratio (SNR), and analysis each factorial contribution by ANOVA. Thirdly, used Radial Basis Function Network (RBFN) method to train the non-linear meta-modeling and found out the best factorial combination by Particle Swarm Optimization (PSO) and Weighted Percentage Reduction of Quality Loss (WPRQL). Finally, the application of the above methods gives the global optimum for multi-quality characteristics and the robust design configuration, including L/D is 9.4:1, the foreplane on the hull (Bow-2), and position of the sail is 0.25 Ls from the bow. The result shows that the total quality is improved by 86.03% in comparison with the original design.

The Optimization of Laser Welding Process for Electrical Steel Coil Joining Using the Taguchi Method (다구찌 방법을 이용하는 전기강판 코일 연결용 레이저 용접 공정의 최적화)

  • Shin, Joong-Han;Kim, Do-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.63-70
    • /
    • 2022
  • Laser welding has attracted great attention as a tool used to join electrical steel coils. In this study, laser butt welding for electrical steel coil joining was conducted using the Taguchi method. It was found that structural defects such as void sand cracks were not produced in welds. This indicated that the performance of laser welding in electrical steel was excellent. According to the Taguchi analysis, the total welding quality index (TWQI) considering the bead height and roughness and tensile strength of the weld joint was almost evenly affected by laser power, welding speed, and focal position. The optimum welding conditions to maximize the TWQI were a laser power of 1220W, welding speed of 90 mm/s, and a focal position of 1mm. The regress model predicting the TWQI was also developed using the surface response method. We found that the model predicts measured values with an average error of 16.36%.

Optimization of mineral admixtures and retarding admixture for high-performance concrete by the Taguchi method

  • Chao-Wei Tang
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.185-206
    • /
    • 2023
  • This article aimed to explore the optimization of mineral admixtures and retarding admixture for high-performance concrete. In essence, fresh concrete can be regarded as a mixture in which both coarse and fine aggregates are suspended in a cement-based matrix paste. Based on this view, the test procedure was divided into three progressive stages of binder paste, mortar, and concrete to explore their rheological behavior and mechanical properties respectively. At each stage, there were four experimental control factors, and each factor had three levels. In order to reduce the workload of the experiment, the Taguchi method with an L9(34) orthogonal array and four controllable three-level factors was adopted. The test results show that the use of the Taguchi method effectively optimized the composition of high-performance concrete. The slump of the prepared concrete was above 18 cm, and the slump flow was above 50 cm, indicating that it had good workability. On the other hand, the 28-day compressive strength of the hardened concretes was between 31.3-59.8 MPa. Furthermore, the analysis of variance (ANOVA) results showed that the most significant factor affecting the initial setting time of the fresh concretes was the retarder dosage, and its contribution percentage was 62.66%. On the other hand, the ANOVA results show that the most significant factor affecting the 28-day compressive strength of the hardened concretes was the water to binder ratio, and its contribution percentage was 79.05%.

A Study on the Optimum Design of Warm-up rate in a Air-Heated Heater System by Using CFD Analysis and Taguchi Method (전산유체해석과 다구찌 방법을 연계한 공기 가열식 히터 시스템의 난방속효성 최적화에 관한 연구)

  • Kim, Min-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.72-82
    • /
    • 2005
  • The objective of this paper is to describe the optimization of design parameters in a large-sized commercial bus heater system by using CFD(computational fluid dynamics) analysis and Taguchi method. In order to obtain the best combination of each control factor which results in a desired performance of heater system, the parameter design of the Taguchi method is adopted for the robust design considering the dynamic characteristic. The research activity may be divided into four phases. The first one is analyzing the problem, i.e., ascertaining the influential factors. In the second phase the levels were set in such a way that their variation would significantly influence the response. In the third phase the experimental runs were designed. In the final phase the planned runs were carried out numerically to evaluate the optimal combination of factors which is able to provide the best response. In this study, eight factors were considered for the analysis: one with two level and seven with three level combinations comprising the $L_{18}(2^1{\times}3^7)$ orthogonal array. The results of this study can be summarized as follows ; (i)The optimum condition of control factor is a set of <$A_2\;B_1\;C_3\;D_3\;E_1\;F_2\;G_3\;H_2$> where A is shape of the outer fin, B is pitch of the outer fin, C is height of the outer fin, D is the inner fin number, E is the inner fin height, F is length of the flame guide, G is diameter of the heating element and H is clearance between air guide and heating element. (ii)The heat capacity of heated discharge air under the optimum condition satisfies the equation y=0.6M w here M is a signal factor. (iii)The warm-up rate improves about three times, more largely as com pared with the current condition, which results in about 9.2minutes reduction.

Optimization of Process Parameters of Die Slide Injection by Using Taguchi Method (다구치 법을 통한 다이슬라이드식 사출성형의 공정파라미터 최적화)

  • Jeong, Soo-Jin;Moon, Seong-Joon;Jeoung, Sun-Kyoung;Lee, Pyoung-Chan;Moon, Ju-Ho
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.264-269
    • /
    • 2012
  • Die slide injection marvelously reduces the cost and time in processing plastic products because they can simplify the conventional process through eliminating additional process. However, this process must resolve some defects like whitening, resin infiltration, blowhole, resin overflow, etc. In this study, the process parameters of the injection molding are optimized by using the finite element method and Taguchi method. The injection molding analysis is simulated by employing the Moldflow insight 2010 code and the 2nd injection is by adopting the Multi-stage injection code. The process parameters are optimized by using the $L_{16}$ orthogonal array and smaller-the-better characteristics of the Taguchi method that was used to produce an airtight container (coolant reservoir tank) from polypropylene (PP) plastic material.rodanwhile, the optimum values are confirmed to be similar in 95% confidence and 5% significance level through analysis of variance (ANOVA). rooreover, new products and old products were compared by mdasuring the dimensional accuracy, resulting in the improvement of dimensional stability more than 5%.

Robust Design of Credit Scoring System by the Mahalanobis-Taguchi System

  • Su, Chao-Ton;Wang, Huei-Chun
    • International Journal of Quality Innovation
    • /
    • v.5 no.2
    • /
    • pp.1-16
    • /
    • 2004
  • Credit scoring is widely used to make credit decisions, to reduce the cost of credit analysis and enable faster decisions. However, traditional credit scoring models do not account for the influence of noises. This study proposes a robust credit scoring system based on Mahalanobis-Taguchi System (MTS). The MTS, primary proposed by Taguchi, is a diagnostic and forecasting method using multivariate data. The proposed approach's effectiveness is demonstrated by using real case data from a large Taiwanese bank. The results reveal that the robust credit scoring system can be successfully implemented using MTS technique.

The Optimal Parameter Design of the stone surface equipment Using the Taguchi Method (다구찌 방법을 이용한 석재표면처리장치의 최적표면가공조건 선정에 관한 연구)

  • 김득주;서장훈;박명규
    • Journal of the Korea Safety Management & Science
    • /
    • v.6 no.2
    • /
    • pp.251-262
    • /
    • 2004
  • There is boner process of stone manufacturing to become quality down of stone to consolidated micro crack appearance of stone surface and biotite by fire that is to be route process in stone surface by flame of LPG. And then, it is develop that stone surface process equipment by automation for the work method of boner process can be substitute work method by shotball blasting. To developement of equipment, There is to be down noise and dust. Acording to remove calamity growth hazardous substance in the work environment, there is to solve workplace avoidance factor. We have taken Taguchi's parameter design approch, specifically orthogonal array, and determined the optimal levels of stone surface through analysis of the experimental results using SIN ratio.

The Optimization Processing on a Expanded Tube Using Mini-Tab (Mini-Tab을 이용한 D-Tube 확관 최적 공정 설계)

  • Joo, Won-Kyung;Kwun, Yong-Gu;Bae, Sung-In;Song, Jung-Il
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.751-755
    • /
    • 2007
  • The purpose of this study is to find the optimization processing on expanded tube using Taguchi method which was generally used to analyze the effects of various control factors. Mini-Tab is a good for program that is making a selection using Taguchi method. The results of experimental test and analysis are as follows. Optimization processing on a expanded tube is dependent on lubrication condition. The slight eccentricity of expanded tube was obtained a good results on the expanded tube. When expending processing on the expanded tube was performed, the test specimens were almost unaffected by changing pressure loading. The tendencies of test results were related to lubrication condition and eccentricity in expending processing. As a result, a proper lubrication condition and eccentricity in the step of design will improve the optimization processing of expanded tube.

  • PDF

A Study on the effect of cutting parameters in face turning based on the Taguchi method (다구찌 방법에 기초한 단면절삭에서 절삭파라미터 영향에 관한 연구)

  • 장성민;조명우
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.111-116
    • /
    • 2003
  • In this paper, object of experiment is to study on the effect of cutting parameters to obtain optimal surface toughness in face turning. Surface roughness is significantly important to be high quality of parts produced by turning process. For this purpose, the optimization of cutting parameters for fan Owning operation is investigated applying the Taguchi method. An orthogonal array, signal-to-noise ratio, and the analysis of variance are employed to evaluate effect of cutting parameters fir face turning. Also confirmation tests were performed to make a comparison between the results predicted from the mentioned correlations and the theoretical results. Cutting experiment is performed without cutting fluid using coated tungsten carbide inserts about workpieces of SM45C.

  • PDF