• Title/Summary/Keyword: tactile stimulation

Search Result 87, Processing Time 0.024 seconds

Psychophysical Experiment for Shape Recognition by Vibratory Tactile Stimulated Array (진동자극배열에 의한 형상 인식의 정신물리학적 실험)

  • Yoon Myoung-Jong;Kim Nam-Gyun;Yu Kee-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.943-949
    • /
    • 2005
  • For the psychophysical experiment of tactile perception of shapes, experimental system consists of vibrator, tactile stimulation array, measurement and control system is designed and prepared. The psychophysical experiment for the tactile perception of shape is carried out by the estimation of the subject group. Through the experiment the threshold of tactile perception to multi-stimuli with some line shape is obtained. Also the appropriate tactile stimulus intensity and frequency of the tactile stimulation array to recognize arbitrary shapes effectively are derived and discussed.

Comparison of Cortical Activation between Tactile Stimulation and Two-point Discrimination: An fMRI Case Study (촉각 자극과 두점식별 자극에 따른 뇌활성도 분석: fMRI 사례 연구)

  • Park, Ji-Won;Kim, Chung-Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.22 no.4
    • /
    • pp.97-101
    • /
    • 2010
  • Purpose: Sensory input is very important for proper performance of human. Two-point discrimination is the most widely used tactile sensory test. The purpose of this study was to find the changes in cortical activation patterns between tactile stimulation and two-point discrimination. Methods: Two healthy subjects participated in our study. fMRI scanning was done during 4 repeated blocks of tactile stimulation and two point discrimination of the right index finger tip. In one block, stimuli were repeated 10 times every three seconds. To determine the changes of cortical neurons during sensory input, intensity index was analyzed. Results: When tactile stimulation of the right index finger tip was completed, only contralateral primary somatosensory area was activated. In contrast, during two-point discrimination, both the primary somatosensory area and ipsilateral supplementary sensory area were activated. Conclusion: During two point discrimination, both primary somatosensory area and ipsilateral supplementary sensory area were activated. Therefore, two-point discrimination is required more complex and conscious activity than tactile stimulation.

Variation of the Muscle Activity of Erector Spinalis and Multifidus According to Their Respective Cueing When Performing Tasks, Including Tactile Stimulation in Prone Position

  • Gam, Byeong-Uk;Song, Changho
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.1
    • /
    • pp.88-96
    • /
    • 2022
  • Objective: Purpose of this study was to compare muscle activity ratio of multifidus to erector spinalis according to various cueing including tactile stimulation to provide an effective strategy to provide verbal and tactile feedback during exercise to provoke multifidus muscle activation. Design: Cross-sectional study. Methods: Participants of this study included 28 healthy adults. Muscle activities of the multifidus and erector spinalis were measured while the participants performed tasks according to the three different methods of verbal cueing and three different tactile stimulation. Surface EMG was used to measure the muscular activity of the muscles during all the tasks. Results: Tactile stimulation to abdomen and lumbar vertebrae showed no significant difference in the muscle activity ratio (p>0.05). However, muscle activity ratio of the multifidus in relation to the erector spinalis was increased when subjects were given verbal instructions to make lumbar curvature with little force and to make lumbar curvature while pulling navel (p<0.05). However, it was decreased when they were provided with verbal instruction to make lumbar curvature with strong force (p<0.05). Conclusions: According to the results, proper verbal instruction was an effective tool to increase the muscular activity of multifidus. This study aimed to find and provide the most appropriate verbal cueing while doing exercises to activate multifidus.

Stereo-Vision-Based Human-Computer Interaction with Tactile Stimulation

  • Yong, Ho-Joong;Back, Jong-Won;Jang, Tae-Jeong
    • ETRI Journal
    • /
    • v.29 no.3
    • /
    • pp.305-310
    • /
    • 2007
  • If a virtual object in a virtual environment represented by a stereo vision system could be touched by a user with some tactile feeling on his/her fingertip, the sense of reality would be heightened. To create a visual impression as if the user were directly pointing to a desired point on a virtual object with his/her own finger, we need to align virtual space coordinates and physical space coordinates. Also, if there is no tactile feeling when the user touches a virtual object, the virtual object would seem to be a ghost. Therefore, a haptic interface device is required to give some tactile sensation to the user. We have constructed such a human-computer interaction system in the form of a simple virtual reality game using a stereo vision system, a vibro-tactile device module, and two position/orientation sensors.

  • PDF

Development of Walking Guide Robot for the Blind (시각장애인을 위한 보행안내로봇 개발)

  • Yu K.H.;Yoon M.J.;Kwon T.K.;Kim N.G.;Kang J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.888-891
    • /
    • 2005
  • In this paper, the prototype of a walking guide robot with tactile display is introduced, and the psychophysical experiment of the tactile recognition for a tactile display is carried out and analyzed. The objective of this research is the development of a walking guide robot for the blind to walk safely. A walking guide robot consists of a guide vehicle and a tactile display device. A guide vehicle, located in the front of the walking blind, detects the obstacle using ultrasonic sensors and offers the information of position and walking direction acquired from GPS module to the walking blind by voice. The tactile display device, located in the handle which is connected with the guide vehicle by cane, offers the processed obstacle information such as position, size, moving, shape of obstacle and safe path, etc. The psychophysical experiments for the threshold of perception and recognition ability of tactile stimulation are carried out by the estimation of the subject group. As a result the appropriate tactile stimulus intensity and frequency to recognize tactile stimulation effectively are discussed and derived.

  • PDF

Effects of Modulation Type on Electrically-Elicited Tactile Sensation (전기자극 변조방식이 체성감각에 미치는 영향)

  • Hwang, Sun-Hee;Ara, Jawshan;Song, Tong-Jin;Bae, Tae-Sue;Park, Sang-Hyuk;Khang, Gon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.7
    • /
    • pp.711-716
    • /
    • 2012
  • The purpose of this study was to investigate how the modulation method affects the effectiveness of eliciting tactile sensations by electrical stimulation. Two methods were employed and the results were compared and analyzed; pulse amplitude modulation (PAM) and pulse width modulation (PWM). Thirty-five healthy subjects participated in the experiments to measure the stimulation intensity that began to elicit a tactile sensation - activation threshold (AT). Constant-current monophasic rectangular pulse trains were employed, and the stimulation intensity was varied from zero until the subject felt any uncomfortable sensation. The step size of the stimulation intensity was 100nC/pulse. After each experiment, the subject described the sensation both quantitatively and qualitatively. The two modulation methods did not make a significant difference as far as the AT values were concerned, but most of the subjects showed 'intra-individual' consistency. Also, it was confirmed that our range of the stimulation parameters enabled us to obtain three major tactile sensations; tickling, pressure and vibration. The results suggested that the stimulation parameters and the modulation type should be selected for each individual and that selective electrical stimulation of the mechanoreceptors needs more diversified researches on the electrode design, multi-channel stimulation protocol, waveforms of the pulse train, etc.

Adaptation of Sensory Nerve Afferents for Selective Elicitation of Tactile Sensations (감각의 순응을 이용한 선택적 감각유발 가능성)

  • An, Boyoung;Ma, Joohyung;Hwang, Sun Hee;Song, Tongjin;Khang, Gon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.10
    • /
    • pp.845-850
    • /
    • 2015
  • This study was designed to investigate the feasibility of utilizing an adaptation for selective elicitation of tactile sensations by means of transcutaneous electrical stimulation. We conducted the first experiment to investigate how the stimulation frequency affected the adaptation. Twenty healthy subjects participated in the second experiment to confirm our proposal that the perception intensity of the low-frequency vibration can be enhanced after a high-frequency adaptation, and vice versa. It was found that (1) a low-frequency stimulation did not adapt the nerve afferents responsible for the high-frequency vibration, (2) a high-frequency stimulation affected the nerve afferents responsible for the low-frequency vibration, but adapted to the pressure sensation more intensely, and (3) more than 62% of the subjects reported a more clear selective sensation after the adaptation had lessened or depressed the unwanted sensation. The observations showed that adaptation of the nerve afferent could be utilized for selective elicitation of tactile sensations.

Emotional Preference Modulates Autonomic and Cortical Responses to Tactile Stimulation (촉각자극에 의한 자율신경계 및 뇌파 반응과 감성)

  • Estate Sokhadze;Lee, Kyung-Hwa;Imgap Yi;Park, Sehun;Sohn, Jin-Hun
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 1998.11a
    • /
    • pp.225-229
    • /
    • 1998
  • The purpose of the current study was comparative analysis of autonomic and electrocortical responses to passive and active touch of the tektites with different subjective emotional preference. Perspective goal of the project is development of a template for classification of tactile stimuli according to subjective comfort and associated physiological manifestations. The study was carried out on 36 female college students. Physiological signals were acquired by Grass and B10PAC 100 systems with AcqKnowledge III software. Frontal, parietal and occipital EEG (relative power spectrum /percents/ of EEG bands - delta, theta, slow and fast alpha, low and fast beta), and autonomic variables, namely heart rate (HR), respiratory sinus arrhythmia (RSA), pulse transit time (PTT), respiration rate (RSP) and skin conductance parameters (SCL, amplitude, rise time and number of SCRs) were analyzed for rest baseline and stimulation conditions. Analysis of the overall pattern of reaction indicated that autonomic response to tactile stimulation was manifested in a form of moderate HR acceleration, RSP increase, RSA decrease (lowered vagal tone), decreased n and increased electrodermal activity (increased SCL, several SCRs) that reflects general sympathetic activation. Parietal EEG effects (on contra-lateral side to stimulated hand) were featured by short-term alpha-blocking, slightly reduced theta and significantly increased delta and enhanced fast beta activity with few variations across stimuli. The main finding of the study was that most and least preferred textures exhibited significant differences in autonomic (HR, RSP, PTT, SCR, and at less extent in RSA and SCL) and electrocortical responses (delta, slow and fast alpha, fast beta relative power). These differences were recorded both in passive and active stimulation modes, thus demonstrating reproducibility of distinction between most and least emotionally preferred tactile stimuli, suggesting influence of psychological factors, such as emotional property of stimulus, on physiological outcome. Nevertheless, development of sufficiently sensitive .and reliable template for classification of emotional responses to tactile stimulation based on physiological response pattern may require more extensive empirical database.

  • PDF

Time-Frequency Analysis of EEGs Evoked by Tactile Stimulation (피부자극에 의해 유발되는 뇌파의 Time-Frequency 분석)

  • Yeo, H.S.;Oh, S.H.;Im, J.J.;Sohn, J.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.243-246
    • /
    • 1996
  • This study was peformed to characterize the physiological signal prior to develop an algorithm which quantifies EEGs evoked by tactile stimulation. The experiment was devised with four experimental conditions, which were control and two levels of pressures in tactile sensation. Twenty subjects were used to obtain EEGs while applying tactile stimulation using two types of textiles, soft towel and sand paper, to the right hand of each subject. EEGs were acquired for 20 seconds, and each trial was repeated five times randomly at the different levels of stimulus intensities. The index, $S_{n}$, was obtained by calculating the ratio of energy distribution in the time-frequency plot for each scored psychological state of the subject. The results showed that dominant aspects of the EEG signals have their maximal frequencies concentrated at a lower ranges for the resting and pleasant state, while the spectral energies were distributed to higher frequency ranges when subjects experience an unpleasant emotion.

  • PDF