• Title/Summary/Keyword: tacho pulse

Search Result 7, Processing Time 0.022 seconds

Error Analysis of Reaction Wheel Speed Detection Methods Due to Non-uniformity of Tacho Pulse Duration (타코 펄스 불균일성이 존재하는 반작용휠의 속도측정 방법 오차 분석)

  • Oh, Shi-Hwan;Yong, Ki-Lyuk
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.92-97
    • /
    • 2009
  • Two conventional speed detection methods (Elapsed-time method and Pulse-count method) are analyzed and compared for a high speed motor with digital tacho pulse with non-uniformity. In general, the elapsed-time method usually has better performance than a pulse-count method in case sufficiently high speed clock is used to measure the time difference. But if a tacho pulse non-uniformity exists in the reaction wheel - most of reaction wheel has a certain amount of non-uniformity - the accuracy of the elapsed-time method is degraded significantly. Thus the performance degradation is analyzed with respect to the level of non-uniformity of tacho pulse distribution and an allowable bound is suggested.

  • PDF

Tacho Pulse Non-uniformity Effects on Pulse Count Method (타코펄스 불균일성으로 인한 펄스개수측정방법 영향성)

  • Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.4
    • /
    • pp.301-309
    • /
    • 2021
  • Pulse count method is the classical reaction wheel speed detection method. In this study, we represent the pulse count method as mathematical equations. Instead of rotation speed, we model the reaction wheel rotation through rotation angle during sampling periods. We verified the effectiveness of the proposed model by comparing the pulse counts variation and averaging method effects from the model and previous research results. Then, we add tacho pulse non-uniformity to this verified model, and examine the errors of pulse count method. We express the measurement error increasement due to non-uniformity as mathematical equations, and also shows the requirement of moving average numbers to offset the measurement errors.

Elapsed-time Method With Tacho Pulse Non-uniformity Correction (타코펄스 불균일성 보정이 포함된 펄스간 시간 측정방법)

  • Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.4
    • /
    • pp.269-275
    • /
    • 2022
  • In ideal configuration, elapsed-time method can measure the exact reaction wheel speed. But in real configuration, the speed measurement error exists due to tacho pulse non-uniformity. In this research, we study the method which overcome the non-uniformity effects. First, we introduce the method which spin the wheel at the specific speed and measure the non-uniformity. Then, we propose the real-time measurement error correction method which uses the obtained non-uniformity information. This method calculate the speed candidates from the elapsed-time method's counts and non-uniformity information, and choose the closest speed to the real speed. Through simulation, we show that proposed method measure the exact speed regardless of non-uniformity, and fast wheel speed control is possible.

Error Analysis of Reaction Wheel Speed Detection Methods (반작용휠 속도측정방법의 오차 분석)

  • Oh, Shi-Hwan;Lee, Hye-Jin;Lee, Seon-Ho;Yong, Ki-Lyuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.481-490
    • /
    • 2008
  • Reaction wheel is one of the actuators for spacecraft attitude control, which generates torque by changing an inertial rotor speed inside of the wheel. In order to generate required torque accurately and estimate an accurate angular momentum, wheel speed should be measured as close to the actual speed as possible. In this study, two conventional speed detection methods for high speed motor with digital tacho pulse (Elapsed-time method and Pulse-count method) and their resolutions are analyzed. For satellite attitude maneuvering and control, reaction wheel shall be operated in bi directional and low speed operation is sometimes needed for emergency case. Thus the bias error at low speed with constant acceleration (or deceleration) is also analysed. As a result, the speed detection error of elapsed-time method is largely influenced upon the high-speed clock frequency at high speed and largely effected on the number of tacho pulses used in elapsed time calculation at low speed, respectively.

Simple Dynamometer for Dynamics Investigation of Induction Motor

  • Inpradab, Tanin;Pongswatd, Sawai;Masuchun, Ruedee;Ukakimapurn, Prapart
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.821-824
    • /
    • 2005
  • This paper presents a technique to evaluate torque and speed characteristics of induction motor with the Dynamometer. The simple Dynamometer controlled via microcontroller and displayed by computer. The Microcontroller generates the PWM (Pulse Width Modulation) signal and control the duty cycle of signal for control braking level. The Buck converter is a braking unit which uses IGBT as switch in circuit. The output current of the Buck converter and output voltage of tacho generator are converted to digital signals and analyzed by microcontroller. The signals are then sent to computer for displaying torque and speed responds independent on the braking time. The test results of the Dynamometer in this research can coreectly predict the torque and speed response under reasonable tests. Moreover, this Dynamometer is easy and inexpensive to make.

  • PDF

The Implementation of the Speed Measurement Board for the Reaction Wheel on the LEO Satellite using the T, M-Method (T-방식과 M-방식을 이용한 저궤도위성용 반작용 휠의 속도측정보드 설계)

  • Lee, Jae-Nyeung;Park, Sung-Hun;Heu, Su-Jin;Lee, Yun-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.9
    • /
    • pp.827-832
    • /
    • 2012
  • In this paper, we will design the speed measurement board of LEO Satellite's reaction wheel which has two speed measuring methods as M-Method type and T-Method type. therefore we can use the advantage of two methods. and we will verify the availability of design on the on-board computer at the real LEO Satellite(KOMPSAT-3). In the reaction wheels satellite that can change the satellite's attitude is one of the leading drivers by the rotational inertia of the motor will perform attitude control. Reaction methods for detecting wheel rotation speed generated during a certain period T internal reaction wheel tacho pulse counting M-Method to detect wheel speed and wheel tacho pulses are generated by measuring the time between the detection rate can be divided into T-Method. M-method is simple to implement and benefit measurement time is constant, but slow fall in the velocity measurement accuracy is a disadvantage. In contrast, the time between tacho pulses to measure the T-Method to measure the precise speed at low speed and to measure the time delay is small, has the advantage. However, this method also in the actual implementation and the complexity of the operation at different speeds depending on the speed of operation has the disadvantage.

Measuring and Generation the speed of reaction wheel for Spacecraft Dynamic Simulator using the T-Method (위성동역학 시뮬레이터용 T-방식을 이용한 반작용휠 속도 측정 및 펄스 생성)

  • Kim, Yong-Bok;Oh, Si-Hwan;Lee, Seon-Ho;Yong, Ki-Lyok;Rhee, Seung-Wu
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.74-82
    • /
    • 2007
  • The M-Method that measures the speed of actuator with counting the number of Reaction wheel Tacho Pulse has the many advantages such that a realization is simple and measuring time is uniform, but it also has the disadvantage that measuring speed becomes worse as the wheel speed goes lower. On the contrary, the T-Method that measures the time duration between the pulses is more accurate at lower-speed and its time delay is smaller than M-Method, but its realization is more difficult than M-Method because measuring time is varying with wheel speed variation. Thought M/T Method mixing M-Method with T-Method is widely used in order to measure the speed in the motor industrial area, one of two methods has been used in the spacecraft design area. Therefore, we try to apply both methods together to measuring the speed of Reaction Wheel, the core actuator for low earth orbit satellite. This paper provides the Reaction Wheel simulation board located in the Spacecraft Dynamic Simulator, ground support test set.

  • PDF