• Title/Summary/Keyword: t-z model

Search Result 168, Processing Time 0.027 seconds

Mechanism of Soil Remediation in Contaminated Area Using Vertical Drains (연직배수재(VDs)에 의한 오염지반정화 메커니즘 연구)

  • Lee Haeng Woo;Chang Pyoung Wuck;Kang Byung Yoon;Kim Hyun Tae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.5
    • /
    • pp.63-71
    • /
    • 2005
  • In-situ soil remediation mechanism through the vertical drains (VDs) is analyzed with numerical model as the error and complementary error function. Results from in-situ test and analysis indicate that the contaminant concentration ratio as initial one ( C/$C_0$) increases as the radius ratio ( r/R) increases from the injection well, and also increases as the depth ratio ( z/ H) increases from the top of contaminated area. The elapse time needed to attain $50\%$ and $90\%$ clean up level ($ t_{50},\;t_{90}$) increases as the radius ratio ( r/R) and the depth ratio ( z/ H) increase. As above results, the procedure of soil flushing in contaminated area using vertical drains makes progress from the top of injection well to the bottom of extraction well.

Reliability study of 6-axis model surgery simulator for orthognathic surgery (6축 모형수술 시뮬레이터의 정확도에 관한 연구)

  • Jeon, Jae-Ho;Lee, Hyung-Chul;Ji, Hyun-Jin;Jeon, Yeong-Jin;Kim, Yong-Il;Son, Woo-Sung;Park, Soo-Byung;Kim, Sung-Sik;Whang, Dae-Seok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.1
    • /
    • pp.23-27
    • /
    • 2010
  • The purpose of this study was to evaluate the reliability of 6-axis model surgery simulator (6AMSS) for orthognathic surgery. A rectangular parallelepiped plastic block was assembled to model-mounting plate of 6AMSS. Left-right (X), anterior-posterior (Y), up-down (Z) translation and pitching (${\phi}X$), rolling (${\phi}Y$) and yawing (${\phi}Z$) rotation was planned and performed using 6AMSS. The actual translation and rotation were measured with dial gauge and precisional protractor, respectively. Comparison between the planned and actual movements of plastic block for each variable were made using paired t- test. Statistical analysis for X, Y, Z, ${\phi}X$, ${\phi}Y$ and ${\phi}Z$ movement have shown no significant differences between planned and actual movement (P > 0.05). This indicate that model surgery performed with the aid of the 6AMSS is accurate in 3D translation and rotation. The 6AMSS is practically useful for accurate fabrication of surgical splint for orthognathic surgery.

A simple model for a mush

  • Yang, Young-Kyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.4
    • /
    • pp.583-593
    • /
    • 1997
  • We have derived a simple ODE system for the mush by assuming that the temperature T, the solid fraction $\phi$ and the vertical component $\omega$ of the velocity, depend on z only. Analytical solutions of the system have presentd in case of $\omega << 1 and \phi << 1$.

  • PDF

AN AFFINE MODEL OF X0(mn)

  • Choi, So-Young;Koo, Ja-Kyung
    • Bulletin of the Korean Mathematical Society
    • /
    • v.44 no.2
    • /
    • pp.379-383
    • /
    • 2007
  • We show that the modular equation ${\phi}^{T_n}_m$ (X, Y) for the Thompson series $T_n$ corresponding to ${\Gamma}_0$(n) gives an affine model of the modular curve $X_0$(mn) which has better properties than the one derived from the modular j invariant. Here, m and n are relative prime. As an application, we construct a ring class field over an imaginary quadratic field K by singular values of $T_n(z)\;and\;T_n$(mz).

A simple creep constitutive model for soft clays based on volumetric strain characteristics

  • Chen, G.;Zhu, J.G.;Chen, Z.;Guo, W.L.
    • Geomechanics and Engineering
    • /
    • v.29 no.6
    • /
    • pp.615-626
    • /
    • 2022
  • The soft clays are widely distributed, and one of the prominent engineering problems is the creep behavior. In order to predict the creep deformation of soft clays in an easier and more acceptable way, a simple creep constitutive model has been proposed in this paper. Firstly, the triaxial creep test data indicated that, the strain-time (𝜀-t) curve showing in the 𝜀-lgt space can be divided into two lines with different slopes, and the time referring to the demarcation point is named as tEOP. Thereafter, the strain increments occurred after the time tEOP are totally assumed to be the creep components, and the elastic and plastic strains had occurred before tEOP. A hyperbolic equation expressing the relationship between creep volumetric strain, stress and time is proposed, with several triaxial creep test data of soft clays verifying the applicability. Additionally, the creep flow law is suggested to be similar with the plastic flow law of the modified Cam-Clay model, and the proposed volumetric strain equation is used to deduced the scaling factor for creep strains. Therefore, a creep constitutive model is thereby established, and verified by successfully predicting the creep principal strains of triaxial specimens.

FIRST PRINCIPLE CALCULATIONS OF MCD SPECTRA FOR SANDWICHED Co(110) SYSTEMS

  • Hong, Soon-C.;Lee, Jae-Il;Wu, R.;Freeman, A.J.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.575-578
    • /
    • 1995
  • X-ray magnetic-circular-dichroism (MCD) spectra, orbital ($$) and spin magnetic moments ($$) for Co(110) monolayers a free standing mode or sandwiched between Pd(Pd/1Co/Pd)and Cu layers (Cu/1Co/Cu) are calculated using the thin film full potential linearized augmented plane wave energy band method. In contrast to the double peak structure predicted for the Co(0001) surface, only a minor side peak is found in the MCD spectra for Cu/Co/Cu, while MCD spectra for the other systems show a single peak structure. The MCD sum rules originally derived from a single ion model are found in the band approach to be valid for the systems investigated. However, for the spin sum rule, the magnetic dipole term ($$) is not negligible and needs to be included.

  • PDF

Evaluation of Pile-Ground Interaction Models of Wind Turbine with Twisted Tripod Support Structure for Seismic Safety Analysis (지진 안전도 해석을 위한 Twisted Tripod 지지 구조를 갖는 풍력발전기의 말뚝-지반 상호작용 모델 평가)

  • Park, Kwang-yeun;Park, Wonsuk
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.81-87
    • /
    • 2018
  • The seismic response, the natural frequencies and the mode shapes of an offshore wind turbine with twisted tripod substructure subject to various pile-ground interactions are discussed in this paper. The acceleration responses of the tower head by four historical earthquakes are presented as the seismic response, while the other loads are assumed as ambient loads. For the pile-ground interactions, the fixed, linear and nonlinear models are employed to simulate the interactions and the p-y, t-z and Q-z curves are utilized for the linear and nonlinear models. The curves are designed for stiff, medium and soft clays, and thus, the seven types of the pile-ground interactions are used to compare the seismic response, the acceleration of the tower head. The mode shapes are similar to each other for all types of pile-ground interactions. The natural frequencies, however, are almost same for the three clay types of the linear model, while the natural frequency of the fixed support model is quite different from that of the linear interaction model. The wind turbine with the fixed support model has the biggest magnitude of acceleration. In addition, the nonlinear model is more sensitive to the stiffness of clay than the linear pile-ground interaction model.

The Magnetoresistance in Iron-based Superconductors

  • Lv, B.;Xie, R.B.;Liu, S.L.;Wu, G.J.;Shao, H.M.;Wu, X.S.
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.192-195
    • /
    • 2011
  • The phase transition of vortex matter from solid to liquid was studied in iron-based superconductors. Based on the traditional vortex glass theory, we have examined the magnetoresistivity data of iron-based superconductors using our extended thermal activation model: $\rho(B,T)=\rho((T-T_g(B))/(T_c(0)-T_g(B)))^{v(z-1)}$. We predict that the magnetic field-dependent area S + $S_0$ which integrates $\rho$ with T is proportional to $B^{\beta}$, where ${\beta}$ is the vortex glass transition exponent. From our calculation, the vortex glass transition exponent is 0.33, close to the exponent of area $S_0$ + S is 0.31 in $SmO_{0.9}F_{0.1}FeAs$; the exponent of area S is 0.63, which is close to the irreversibility line exponent 2/3. Both of the results show the validity of our model. In addition, our model is shown to be effective in describing irreversibility behavior in layered superconductors.

CO-CLUSTER HOMOTOPY QUEUING MODEL IN NONLINEAR ALGEBRAIC TOPOLOGICAL STRUCTURE FOR IMPROVING POISON DISTRIBUTION NETWORK COMMUNICATION

  • V. RAJESWARI;T. NITHIYA
    • Journal of applied mathematics & informatics
    • /
    • v.41 no.4
    • /
    • pp.861-868
    • /
    • 2023
  • Nonlinear network creates complex homotopy structural communication in wireless network medium because of complex distribution approach. Due to this multicast topological connection structure, the queuing probability was non regular principles to create routing structures. To resolve this problem, we propose a Co-cluster homotopy queuing model (Co-CHQT) for Nonlinear Algebraic Topological Structure (NLTS-) for improving poison distribution network communication. Initially this collects the routing propagation based on Nonlinear Distance Theory (NLDT) to estimate the nearest neighbor network nodes undernon linear at x(a,b)→ax2+bx2 = c. Then Quillen Network Decomposition Theorem (QNDT) was applied to sustain the non-regular routing propagation to create cluster path. Each cluster be form with co variance structure based on Two unicast 2(n+1)-Z2(n+1)-Z network. Based on the poison distribution theory X(a,b) ≠ µ(C), at number of distribution routing strategies weights are estimated based on node response rate. Deriving shorte;'l/st path from behavioral of the node response, Hilbert -Krylov subspace clustering estimates the Cluster Head (CH) to the routing head. This solves the approximation routing strategy from the nonlinear communication depending on Max- equivalence theory (Max-T). This proposed system improves communication to construction topological cluster based on optimized level to produce better performance in distance theory, throughput latency in non-variation delay tolerant.

Application of an Artificial Neural Network Model to Obtain Constitutive Equation Parameters of Materials in High Speed Forming Process (고속 성형 공정에서 재료의 구성 방정식 파라메터 획득을 위한 인공신경망 모델의 적용)

  • Woo, M.A.;Lee, S.M.;Lee, K.H.;Song, W.J.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.27 no.6
    • /
    • pp.331-338
    • /
    • 2018
  • Electrohydraulic forming (EHF) process is a high speed forming process that utilizes the electric energy discharge in fluid-filled chamber to deform a sheet material. This process is completed in a very short time of less than 1ms. Therefore, finite element analysis is essential to observe the deformation mechanism of the material in detail. In addition, to perform the numerical simulation of EHF, the material properties obtained from the high-speed status, not quasi static conditions, should be applied. In this study, to obtain the parameters in the constitutive equation of Al 6061-T6 at high strain rate condition, a surrogate model using an artificial neural network (ANN) technique was employed. Using the results of the numerical simulation with free-bulging die in LS-DYNA, the surrogate model was constructed by ANN technique. By comparing the z-displacement with respect to the x-axis position in the experiment with the z-displacement in the ANN model, the parameters for the smallest error are obtained. Finally, the acquired parameters were validated by comparing the results of the finite element analysis, the ANN model and the experiment.