• Title/Summary/Keyword: t-z curve

Search Result 45, Processing Time 0.022 seconds

Control of the Residual Vibration of Crane Using Equivalent Input Shaper (등가입력성형기를 이용한 크레인의 잔류진동 제어)

  • Park, Un-Hwan;Lee, Jae-Won;Noh, Sang-Hyun;Yoon, Ji-Sup;Park, Byung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.135-142
    • /
    • 2002
  • Input shaping is a method for reducing residual vibration in computer controlled machines. Vibration is eliminated by convolving a sequence of impulses, an input shaper, with a desired system command to produce a shaped input. This paper shows the shape of sensitivity curve of input shaper as impulse interval T and analysis of robustness for input shaper on the z-plane. And a method is presented for designing equivalent input shaper considering sampling time $T_s$. And then we applied equivalent input shaper to crane system.

Analysis of Diameter Effects on Skin Friction of Drilled Shafts in Sand (사질토 지반에 설치된 현장타설말뚝의 말뚝지름에 따른 주면마찰력 분석)

  • Lee, Sung-June
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.161-170
    • /
    • 2013
  • In this paper, numerical pile segment analysis is conducted with an advanced soil elastoplastic model to investigate the diameter effects on skin friction behaviour of a drilled shaft in sand. Ultimate skin friction and 't-z' behavior from the pile segment analyses for drilled shafts show good agreement with those from design methods. Higher ultimate skin friction for the smaller diameter pile is related to the greater increase in the effective radial stress at the interface due to the localized dilation at and near the pile interface. Stiffer t-z curve for the smaller diameter pile is related to the early occurrence of three shear stages (early, dilation, constant volume shear stages). The diameter effects on ultimate skin friction of drilled shafts are more prominent for denser sand and lower confining pressure.

Radiative Transfer Model of Dust Attenuation Curves in Clumpy, Galactic Environments

  • Seon, Kwang-il;Draine, Bruce T.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.40.2-40.2
    • /
    • 2016
  • The attenuation of starlight by dust in galactic environments is investigated through models of radiative transfer in a spherical, clumpy interstellar medium (ISM). We show that the attenuation curves are primarily determined by the wavelength dependence of absorption rather than by the underlying extinction (absorption+scattering) curve; the observationally derived attenuation curves cannot constrain a unique extinction curve unless the absorption or scattering efficiency is specified. Attenuation curves consistent with the Calzetti curve are found by assuming the silicate-carbonaceous dust model for the Milky Way (MW), but with the $2175{\AA}$ bump suppressed or absent. The discrepancy between our results and previous work that claimed the Small Magellanic Cloud dust to be the origin of the Calzetti curve is ascribed to the difference in adopted albedos; we use the theoretically calculated albedos whereas the previous ones adopted empirically derived albedos from observations of reflection nebulae. It is found that the model attenuation curves calculated with the MW dust are well represented by a modified Calzetti curve with a varying slope and UV bump strength. The strong correlation between the slope and UV bump strength, as found in star-forming galaxies at 0.5 < z < 2.0, is well reproduced if the abundance of the UV bump carriers is assumed to be 30-40% of that of the MW-dust; radiative transfer effects lead to shallower attenuation curves with weaker UV bumps as the ISM is more clumpy and dustier. We also argue that some of local starburst galaxies have a UV bump in their attenuation curves, albeit very weak.

  • PDF

NEP-AKARI: EVOLUTION WITH REDSHIFT OF DUST ATTENUATION IN 8 ㎛ SELECTED GALAXIES

  • Buat, V.;Oi, N.;Burgarella, D.;Malek, K.;Matsuhara, H.;Murata, K.;Serjeant, S.;Takeuchi, T.T.;Malkan, M.;Pearson, C.;Wada, T.
    • Publications of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.257-261
    • /
    • 2017
  • We built a $8{\mu}m$ selected sample of galaxies in the NEP-AKARI field by defining 4 redshift bins with the four AKARI bands at 11, 15, 18 and 24 microns (0.15 < z < 0.49, 0.75 < z < 1.34, 1.34 < z < 1.7 and 1.7 < z < 2.05). Our sample contains 4079 sources, 599 are securely detected with Herschel/PACS. Also adding ultraviolet (UV) data from GALEX, we fit the spectral energy distributions using the physically motivated code CIGALE to extract the star formation rate, stellar mass, dust attenuation and the AGN contribution to the total infrared luminosity ($L_{IR}$). We discuss the impact of the adopted attenuation curve and that of the wavelength coverage to estimate these physical parameters. We focus on galaxies with a luminosity close the characteristic $L^*_{IR}$ in the different redshift bins to study the evolution with redshift of the dust attenuation in these galaxies.

The Evolution of Dynamically Recrystallized Microstructure for SCM 440 (SCM 440 강재의 동적 재결정 조직 변화에 관한 연구)

  • 한형기;유연철
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.35-41
    • /
    • 2001
  • The high temperature deformation behavior of SCM 440 can be characterized by the hot torsion test in the temperature ranges of $900^{\circ}C$~$1100^{\circ}C$ and strain rate ranges of 0.05/sec~5/sec. The aim of this paper is to establish the quantitative equation of the volume fraction of dynamic recrystallization (DRX) as a function of processing variables, such as strain rate ($\varepsilon$), temperature (T), and strain ('$\varepsilon$). During hot deformation, the evolution of microstructure could be analyzed from work hardening rate ($\theta$). For the exact prediction of dynamic softening mechanism the critical strain ($\varepsilon_c$), the strain for maximum softening rate ($\varepsilon^*$ and Avrami' exponent (m') were quantitatively expressed by dimensionless parameter, Z/A, respectively. The transformation-effective strain-temperature curve for DRX could be composed. It was found that the calculated results were agreed with the experimental data for the steel at any deformation conditions.

  • PDF

Nanosecond Laser Flash Photolysis Study of 5-Styryl-1,3-dimethyluracil

  • Shim Sang Chul;Shin Eun Ju;Chae Kyu Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.6 no.4
    • /
    • pp.234-238
    • /
    • 1985
  • The photoisomerization of 5-styryl-1,3-dimethyluracil is studied with nanosecond laser flash photolysis technique at room temperature. The laser flash photolysis of E-isomer produces the transient absorption spectrum regarded as the triplet-triplet absorption, but the transient absorption of Z-isomer does not show the typical decay curve, probably due to the facile photocyclization reaction during the laser flash photolysis. Using the energy transfer method on nanosecond laser spectroscopy, the energy of the lowest triplet state for E isomer is estimated to lie between 41.8 and 47 kcal/mol. The triplet lifetime for E-isomer obtained from the decay curve of the transient absorption is ca. 93ns. The $S_1 → T_1$ intersystem crossing of E-isomer on direct excitation is relatively inefficient at room temperature supporting the singlet mechanism for direct photoisomerization.

Reliability Prediction of Long-term Creep Strength of Gr. 91 Steel for Next Generation Reactor Structure Materials (미래형 원자로 구조 재료용 Gr. 91 강의 장시간 크리프 강도의 신뢰성 예측)

  • Kim, Woo-Gon;Park, Jae-Young;Yin, Song-Nan;Kim, Dae-Whan;Park, Ji-Yeon;Kim, Seon-Jin
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.4
    • /
    • pp.275-280
    • /
    • 2011
  • This paper focuses on reliability prediction of long-term creep strength for Modified 9Cr-1Mo steel (Gr. 91) which is considered as one of the structural materials of next generation reactor systems. A "Z-parameter" method was introduced to describe the magnitude of standard deviation of creep rupture data to the master curve which can be plotted by log stress vs. The larson-Miller parameter (LMP). Statistical analysis showed that the scattering of the Z-parameter for the Gr. 91 steel well followed normal distribution. Using this normal distribution of the Z-parameter, the various reliability curves for creep strength design, such as stress-time temperature parameter reliability curves (${\sigma}$-TTP-R curves), stress-rupture time-reliability curves (${\sigma}-t_{r}-R$ curves), and allowable stress-temperature- reliability curves ([${\sigma}$]-T-R curves) were reasonably drawn, and their results are discussed.

Comparison of Modeling Methods of a Pile Foundation in Seismic Analysis of Bridge Piers (교각의 내진설계를 위한 말뚝기초의 모델링 기법 비교)

  • 김나엽;김성렬;전덕찬;김명모
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.25-32
    • /
    • 2002
  • In the seismic designing of bridges, the pile foundation of bridge piers generally have been modeled to have a fixed end for its convenience and conservative designing. The fixed-end assumption, however, produces very conservative results in terms of the pier forces. Therefore, many other design methods are evolved to consider the flexibility of the pile foundation. In this study, the response spectrum analysis was performed for a bridge pier having a pile foundation. The shear force, moment, and displacement, which occurred at the pier column under an earthquake loading, were compared to analyze the effects of the modeling method, soil condition and the input earthquake response spectrum. In most cases, the fixed-end model gives larger design forces than flexible foundation models. However, when a long period earthquake is applied to the bridge pier on a soft clay foundation, it is found that the flexible foundation models give larger design forces than the fixed-end model. In the end, the reliability of several flexible foundation models was verified by comparing their results with those of a numerical analysis that considers the soil-structure interaction phenomenon in a rigorous manner.

Dynamic Recrystallization of Medium Carbon Steels (중탄소강의 동적 재결정에 관한 연구)

  • Kim S. I.;Han C. H.;Yoo Y. C.;Lee D. R.;Ju U. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.10a
    • /
    • pp.33-36
    • /
    • 2000
  • The dynamic recrystallization (DRX) of medium carbon steels (SCM 440 and POSMA45) was studied with torsion test in the temperature range of $900-1100^{\circ}C$ and the strain rate range of $5.0x10^{-2}\;-\;5.0x10^0/sec$. To establish the quantitative equations for DRX, the evolution of flow stress curve with strain was analyzed. The critical strain (${\varepsilon}_c$) and strain for maximum softening rate ( ${\varepsilon}^{*}$) could be confirmed by the analysis of work hardening rate ($d{\sigma}/d{\varepsilon}\;=\; \theta$). The volume fraction of dynamic recrystallization ($X_{DRX}$) as a function of processing variables, such as strain rate ( $\dot{\varepsilon}$ ), temperature (T), and strain ( $\varepsilon$ ) were established using the ${\varepsilon}_c$ and ${\varepsilon}^{*}$. For the exact prediction, the ${\varepsilon}_c$, ${\varepsilon}^{*}$ and Avrami' exponent (m') were quantitatively expressed by dimensionless parameter, Z/A respectively. The transformation-effective strain-temperature curve for DRX could be composed. It was found that the calculated results were agreed with the experimental data for the steels at any deformation conditions.

  • PDF

Characteristics of Impulse Discharges in Wet Soil (습한 토양의 임펄스방전특성)

  • Kim, Hoe-Gu;Lee, Bok-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.363-369
    • /
    • 2017
  • This paper presents the experimental results related to soil ionization and electrical breakdown in a concentric hemispherical electrode system under lightning impulse voltages. Dynamic voltage-current and impedance-time characteristics of soil ionization were measured and analyzed. Also the electrical breakdowns of the soil gap were investigated. The time-lag to the peak current corresponds to the soil ionization propagation. The time of ionization propagation in wet sand is found to decrease with increasing the impulse currents. A drastic decrease in ground resistance was observed during the impulse current spreading in sand. The electrical breakdown appears at the wave tail of impulse voltage and results in a wide scatter in V-t curves. The voltage-current curves have a fan-like shape attributed to ionization processes which result in increasing current and decreasing voltage.