• 제목/요약/키워드: t-square

Search Result 2,276, Processing Time 0.027 seconds

Differences in Job Stress by Occupation Before and After the Reaction to COVID-19 among Care Facility for the Elderly (요양시설 종사자의 코로나 19 대응 전·후 직종별 직무스트레스 차이)

  • Oh, Doonam;Kim, Jungjae
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.531-540
    • /
    • 2022
  • This study is a descriptive survey study attempted to find out the difference in stress by occupation before and after responding to COVID-19 among care facility for the elderly. In this study, a survey was conducted on workers in care facility for the elderly in Chungcheongnam-do and Gyeonggi-do from March 22 to April 25, 2021. Of a total of 220 questionnaires, 206 were collected, and the data were analyzed through t-test, one way ANOVA, and chi-square test. According to the research results, the difference in the sub-areas of job stress before and after the COVID-19 response of nursing home workers shows that nurses have job demands(t=-3.90, p<.001), job instablity(t=-3.30, p=.002), the nursing assistant has job demands(t=-2.45, p=.018), nursing care workers have job autonomy(t=-3.34, p=.001) showed a significant difference. Therefore, in order to effectively solve job stress according to the occupation of workers in care facility for the elderly in the COVID-19 era, stress relief programs for each occupation must be customized.

The Effect of Turbulence Penetration on the Thermal Stratification Phenomenon Caused by Coolant Leaking in a T-Branch of Square Cross-Section

  • Choi, Young-Don;Hong, Seok-Woo;Park, Min-Soo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.2
    • /
    • pp.51-60
    • /
    • 2003
  • In the nuclear power plant, emergency core coolant system (ECCS) is furnished at reactor coolant system (RCS) in order to cool down high temperature water in case of emergency. However, in this coolant system, thermal stratification phenomenon can occur due to coolant leaking in the check valve. The thermal stratification produces excessive thermal stresses at the pipe wall so as to yield thermal fatigue crack (TFC) accident. In the present study, effects of turbulence penetration on the thermal stratification into T-branches with square cross-section in the modeled ECCS are analysed numerically. Standard k-$\varepsilon$ model is employed to calculate the Reynolds stresses in momentum equations. Results show that the length and strength of thermal stratification are primarily affected by the leak flow rate of coolant and the Reynolds number of duct. Turbulence penetration into the T-branch of ECCS shows two counteracting effects on the thermal stratification. Heat transport by turbulence penetration from main duct to leaking flow region may enhance thermal stratification while the turbulent diffusion may weaken it.

A Study of Heat Transfer Phenomena due to a Formed Gas Bubble under Heat-Conduction Domain in A Closed Square Cavity (TLC 를 이용한 사각공동내의 열전도 영역에 기포의 형성으로 인한 열전달 현상 구명)

  • Eom, Young-Kyoon;You, Jae-Bong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.85-89
    • /
    • 2003
  • In a closed square cavity filled with a liquid, a cooled the upper horizontal wall and a heated the lower horizontal wall, the flow isn't generated under the ground-based condition when Rayleigh number is lower than 1700. In such case the flow phenomena near an air bubble under a cooled horizontal wall were investigated. The temperature and the flow fields were studied by using the Thermo-sensitive Liquid-Crystal and the image processing. The qualitative analysis for the temperature and the flow fields were carried out by applying the image processing technique to the original data. Injecting bubble at the center point of upper cooled wall, the symmetry shape of two vortexes near an air bubble was observed. The bubble size increased, the size of velocity and the magnitude of velocity increased. In spite of elapsed time, a pair of two vortexes was the unique and steady-state flow in a square cavity and wasn't induce to the other flow in the surround region.

  • PDF

The Thermocapillary Effect on Pure Conduction Mechanism in a Closed Square Cavity (수평 사각밀폐공간내의 전도열전달 기구에서 열모세관효과)

  • Yu, Jae-Bong;An, Do-Won;Yoo, Joo-Sik;Eom, Yong-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.11 s.242
    • /
    • pp.1209-1219
    • /
    • 2005
  • In a closed square cavity filled with a liquid, a cooling horizontal upper wall and a heating lower wall, the flow isn't generated under the ground-based condition when Rayleigh number is lower than 1700. In this mechanism, Ra=1534, Temperature and velocity fields near an air-bubble in silicon-oil under a cooled upper wall were investigated. Temperature and velocity fields is visualized using the thermo-sensitive liquid-crystal and light sheet visualization technique. The quantitative analysis fer the temperature and the flow fields were carried out by applying the image processing technique to the original data. The symmetry shape of two vortexes near an air bubble was observed. As the bubble size increased, the size of vortex and the magnitude of velocity increased. In spite of elapsed time, a pair of vortexes was the unique and steady-state flow in a square cavity and wasn't induced to the other flow in the surround region.

Effect of a Magnetic Field on Mixed Convection of a Nanofluid in a Square Cavity

  • Sheikhzadeh, G.A.;Sebdani, S. Mazrouei;Mahmoodi, M.;Safaeizadeh, Elham;Hashemi, S.E.
    • Journal of Magnetics
    • /
    • v.18 no.3
    • /
    • pp.321-325
    • /
    • 2013
  • The problem of mixed convection in a differentially heated lid-driven square cavity filled with Cu-water nanofluid under effect of a magnetic field is investigated numerically. The left and right walls of the cavity are kept at temperatures of $T_h$ and $T_c$ respectively while the horizontal walls are adiabatic. The top wall of the cavity moves in own plane from left to right. The effects of some pertinent parameters such as Richardson number (ranging from 0.1 to 10), the volume fraction of the nanoparticles (ranging 0 to 0.1) and the Hartmann number (ranging from 0 to 60) on the fluid flow and temperature fields and the rate of heat transfer in the cavity are investigated. It must be noted that in all calculations the Prandtl number of water as the pure fluid is kept at 6.8, while the Grashof number is considered fixed at 104. The obtained results show that the rate of heat transfer increases with an increase of the Reynolds number, while but it decreases with increase in the Hartmann number. Moreover it is found that based the Richardson and Hartmann numbers by increase in volume fraction of the nanoparticles the rate of heat transfer can be enhanced or deteriorated compared to the based fluid.

Ultimate Strength of Fillet-welded T-joints in Cold-formed Square Hollow Sections - Chord flange failure mode - (냉간성형 각형강관 모살용접 T형 접합부의 최대내력(I) - 주관 플랜지 파괴모드 -)

  • Bae, Kyu Woong;Park, Keum Sung;Kang, Chang Hoon;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.2
    • /
    • pp.311-318
    • /
    • 2002
  • This paper described the ultimate strength and deformation limit of welded T-joints in cold-formed square hollow sections. Previous studies showed that the strength of a T-joint still increases with increasing deformations at a ratio of branch width to chord width (${\beta}$) of below 0.8. Therefore, the strength at a certain deformation (chord flange indentation) limit can be regarded as the ultimate strength of a T-joint. The chord flange failure modes were investigated for the ratio of branch width to chord width (${\beta}$) and the ratio of chord width to chord web thickness (B/T). Experimental results including tests done by Kato proposed a deformation limit of 3%B for $16.7{\leq}B/T{\leq}41.6$ and $0.27{\leq}{\beta}{\leq}0.8$. The strength formula of CIDECT and other researchers were compared with the test results. Finally, the strength formula based on yield-line theory was proposed.

Development and Construction of low Magnetic Field Control System for Analysis of Magnetic Field Effect in the Deflection Yoke (브라운관의 자기장 영향 분석용 저자기장 제어 장치의 설계 및 제작)

  • Park, Po-Gyu;Kim, Young-Gyun;Shin, Suk-Woo;Choi, Hyung-Ho;Kim, Tae-Ik;Jung, Dong-Keun
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.6
    • /
    • pp.251-256
    • /
    • 2003
  • We have developed the quality analysis system for magnetic field effect of cathode-ray tube that is used a monitor, TV and medical appliance. We designed and constructed the large 3-axis square coil (2 m length) system for the generation of 3-component magnetic field using power supply, magnetometer and computer below 0.2 mT range. The coil constant is 30.31 ${\mu}$T, 29.73 ${\mu}$T and 30.51 ${\mu}$T for the X, Y and Z axis square coil respectively. The magnetic field resolution was 0.01 T. The uniformity of magnetic field was measured within 1 % in the range of 12 cm.

Effects of Aroma Blending Oil Inhalation on Academic Stress and Class Concentration in Nursing Students (아로마 블렌딩 오일 흡입이 간호대학생의 학업스트레스와 수업집중력에 미치는 영향)

  • Mi-Ae Kang
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.2
    • /
    • pp.33-40
    • /
    • 2023
  • This study was aimed at examining the effects of aroma blending oil inhalation on academic stress and class concentration in nursing students. The research design was a nonequivalent placebo control group nonsynchronized. The subjects of the study were 24 students in the treatment group and 24 placebo control group. Data collection was from November 4, 2022 to December 3, 2022, and the data were analyzed chi-square test, independent t-test, paired t-test using the SPSS 23.0 Program. The treatment group inhaled aroma blending oil for 10 days showed a significant decrease in academic stress (t=-8.79, p<.001) and a significant increase in class concentration (t=24.44, p<.001).